红外线测温仪运用时的反扰乱举措

发布者:pcwg最新更新时间:2014-03-03 来源: 21ic关键字:红外线测温仪  反扰乱  信号源 手机看文章 扫描二维码
随时随地手机看文章

    1红外线测温仪运用时的反扰乱举措

  干扰来自干扰源,在仪表内外都可能存在。在仪表外部,一些大功率的用电设备以及电力设备有可能成为干扰源,而在仪表内部的开关以及电源线等也均可能成为干扰源,干扰的引入方式主要如下。

  1.1串模干扰E

  n它是叠加在被测信号之上的干扰,主要由下列方式产生。

  1.1.1红外线测温仪运用时的反扰乱举措

  电磁感应,也就是磁耦合。工程中使用的大功率变压器、交流电网等的周围空间都存在有很强的交变磁场,信号源与二次仪表之间的连接导线、二次仪表内部的配线通过交变磁场的磁耦合在电路中形成干扰,二次仪表的闭合回路处在这种变化的磁场中将会产生感应电势,感应电势可用式表示。这种感应电势与有用信号串联,当信号源与二次仪表相距较远时,此干扰情况较为突出。为降低感应电势,B,A或cos等项必须尽量减小,所以将导线远离这些强用电设备及动力网,调整走线方向以及减小导线回路面积都是必要的。仅由于把2根信号线以短的节距绞和,磁感应电势就能降为原有的110.

  1.1.2静电感应

  静电感应,就是电的耦合。在相对的两物体中,如其一的电位发生变化,则由于物体间的电容使另一物体的电位也发生变化。干扰源是通过电容性的耦合在回路中形成干扰,它是两电场相互作用的结果。

  导线1的电位会在导线2上感应出对地的电压E.当把2根信号线与动力线平行敷设时,由于动力线到两信号线的距离不相等,分布电容也不相等。将在两根信号线上产生电位差,有时能达几十毫伏甚至更大。当把信号线扭绞时能使电场在两信号线上产生的电位差大为减少。而在采用静电屏蔽后,能使感应电势减少到11.

  1.1.3附加热电势和化学电势

  不同的金属接触、摩擦产生的热电势以及金属受腐蚀等原因产生的化学电势,处于电回路时也会成为干扰,这种干扰大多以直流的形式出现。在接线端子板或是干簧继电器等处容易产生热电势。

  1.1.4振动

  导线在磁场中运动时,会产生感应电动势。因此在振动的环境中把信号导线固定是很有必要的。

    1.2共模干扰E

  cEc是叠加在二次仪表任一输入端与地之间的干扰,主要由下列方式产生。

  1.2.1地电位不同

  在大地中,各个不同点之间往往存在电位差,尤其在大功率用电设备附近,当这些设备的绝缘性能较差时,这一电位差更大。而在仪表的使用中往往又会有意或无意地使输入回路存在多个接地点,这样就把不同接地点的电位差引入仪表,这种地电位差有时能达110V以上,而且同时出现在2根信号线上,如所示。

  2.信号源与二次仪表间的共模干扰通过静电耦合的方式,能在两输入端感应出对地的共同电压Ec,以共模干扰的形式出现。

  1.2.2信号源是不平衡

  3a)是信号源为不平衡电桥时与二次仪表之间连接示意图。当桥路电源接地时除桥路对角线的不平衡电压信号即信号源电压Ea外,两信号导线对地都有一公共电压Ec,当二次仪表输入端对地有漏阻抗Z3及Z4时,Ec通过对地的泄漏通道产生漏电流Ic1及Ic2,如3b)所示。

  由于共模干扰不和信号相叠加,它不直接对仪表产生影响。但它通过测量系统形成到地的泄漏电流,这泄漏电流通过电阻的耦合就能直接作用于仪表,产生干扰。因而在两输入端将会产生一干扰电压。[page]

  在了解各种不同的干扰源之后,就可以针对不同的情况采取相应的措施加以消除或避免。因为所有的干扰源都是通过一定的耦合通道而对仪表产生影响,因此可以通过切断干扰的耦合通道来抑制干扰。

  2红外线测温仪运用时的反扰乱举措

  常用的抗干扰措施比较多,要想抑制干扰,必须对干扰做全面的分析了解,要在消除或抑制干扰源、破坏干扰途径和削弱接收电路对噪声干扰的敏感性这三个方面采取措施。

  解决插接件接触不良、虚焊等情况,是消除干扰源的积极主动措施;另外对于直流信号,可以在仪表的输入端加入滤波电路,以使混杂于信号的干扰衰减到最小;在实际过程中,还应当采用隔离的方式尽量避免干扰场的形成,注意将信号导线远离动力线,信号幅值不同的信号线也不应穿在同一导线管内,合理布线,减少杂散磁场的产生,对变压器等加以磁屏蔽等。但是实际上很多的干扰源是难以消除或不能消除的,这时就需要在仪表应用中根据干扰的种类采取防护措施来抑制干扰。

    2.1串模干扰的抑制

  串模干扰与信号叠加,一旦产生则不易消除,应防止它的产生,其措施一般有以下几项。

  211信号导线的扭绞

  把信号导线扭绞在一起能使信号回路包围的面积大为减少,由式可知感应电势En也大大减少;另外,信号导线的扭绞使2根信号导线到干扰源的距离大致相等,分布电容也能大致相等,即C120,由式可知,感应电势Ec大大减少。因此,信号导线的扭绞能使由磁场和电场通过感应耦合进入回路的串模干扰大为减少。

  212屏蔽

  为了防止电场的干扰,可把信号导线用一层金属网作为屏蔽层包起来,再在其外包一层绝缘层,即可选用金属屏蔽导线作为信号传输导线。屏蔽的目的就是隔断场的耦合,抑制各种场的干扰。但采取屏蔽之后,屏蔽层必须正确接地以减少干扰源与信号导线之间的分布电容,将干扰衰减至最小。

  如果屏蔽层是非铁磁性材料,那么对于工频50Hz的磁场无屏蔽效果,可以通过将信号线穿入铁管中,使导线得到磁屏蔽。

  2.2红外线测温仪运用时的反扰乱举措

  c的抑制Ec是叠加在二次仪表任一输入端与地之间的干扰,主要由地电位不同引起,防止共模干扰通常采用屏蔽和接地相结合的方式来抑制干扰。

  为了安全起见,通常二次仪表和信号源壳体都接大地,以保持零电位。信号源电路以及仪表系统也需要稳定接地,如所示,两点接地,由于存在地电位差,产生共模干扰。因此,系统接地通常采用在信号源侧或二次仪表回路单点接地,如所示。为了提高仪表抗干扰能力,仪表生产厂家一般都把放大器浮地,以切断共模干扰的泄漏途径,使干扰无法进入,另外,事实上信号源侧对地也不可能绝缘,采用4a)的接地方式不可能彻底消除地电位差引入的干扰,因此为了提高二次仪表的抗干扰能力,4b)所示的接地方法是经常采用的。

    在实际应用中,通常将屏蔽和接地结合起来应用,往往能解决大部分的干扰问题。如果将屏蔽层在信号侧与仪表侧均接地,则地电位差会通过屏蔽层形成回路,由于地电阻通常比屏蔽层的电阻小得多,所以在屏蔽层上就会形成电位梯度,并通过屏蔽层与信号导线间的分布电容耦合到信号电路中去,因此屏蔽层也必须一点接地。并且,信号导线屏蔽层接地应与系统接地同侧,如4所示。即当不接地的信号源与接地的二次仪表放大器相连时,屏蔽层应如4a)所示接至放大器的公共端,而当信号源接地、放大器浮地时,屏蔽层应如4b)所示接至信号源公共端。

  事实上,由于二次仪表的外壳为了安全需要接地。而仪表的输入端与外壳之间一定存在分布电容和漏电阻,浮地不可能把泄漏途径完全切断,因此,必要的时候,通常采用的是双层屏蔽浮地保护。

  也就是在红外线测温仪运用时的反扰乱举措的外壳内再套一个内屏蔽层,内屏蔽层与信号输入端以及外壳之间均不作连接,内屏蔽层引出一条导线与信号导线的屏蔽层相连接,在信号源处一点接地,这样使二次仪表的输入保护屏蔽及信号屏蔽对信号源稳定起来,处于等电位状态,可以大大提高二次仪表抗干扰的能力。

  以上针对仪表应用中干扰产生的方式,对实际工程中经常采用的几种抗干扰措施予以介绍。实际使用中,工业生产现场的干扰情况复杂,用一种抗干扰方法往往很难解决问题,应针对不同情况,将信号线的扭绞、屏蔽、接地、滤波、隔离等各种方法结合起来使用,以便获得满意的效果。

关键字:红外线测温仪  反扰乱  信号源 引用地址:红外线测温仪运用时的反扰乱举措

上一篇:智能微水仪实践与讨论
下一篇:田间小气候自动观测仪与农业环境监测站的区别分析

推荐阅读最新更新时间:2024-03-30 22:44

示波器探头的详细介绍
示波器是一种用途十分广泛的电子测量仪器。他能把人类肉眼看不到的电信号变换成看得见的图像,从而方便了人们在电现象变化的研究。示波器不可或缺的一个元件就是示波器探头。 一.示波器探头简介 示波器探头是在测试点或信号源和示波器之间建立了一条物理和电子连接;实际上,示波器探头是把信号源连接到示波器输入上的某类设备或网络,它必须在信号源和示波器输入之间提供足够方便优质的连接。连接的充分程度有三个关键的问题:物理连接、对电路操作的影响和信号传输。 二.示波器探头的分类: 市场上提供了数百种、甚至上千种不同的示波器探头。示波器探头的一个技术指标是频率特性,按频率划分探头的种类有其方便之处,但是示波器探头的频率覆盖范围有限很难按无线电频率
[测试测量]
简单介绍红外线测温仪的工作原理
红外线测温仪是电力变压器内部结构故障检测的必备工具,也是产品质量控制和监测的重要手段,它主要由光学系统、光电探测器、信号放大器及信号处理、显示输出等部分组成,其工作原理介绍如下: 在自然界中,任何物体的温度高于零度时,都会不停地向周围空间发出红外辐射能量,而辐射能量的大小及其分布又与物体的表面温度有关,所以,我们可以通过测量物体辐射的红外能量来确定它表面的温度。这也就是红外辐射测温所依据的客观基础。     我们再来看一条关于红外线测温仪的定律。 黑体辐射定律:黑体是一种理想化的辐射体,它吸收所有波长的辐射能量,没有能量的反射和透过,其表面的发射率为1。应该指出,自然界中并不存在真正的黑体,但是为了弄清和获得红外辐
[测试测量]
利用下一代信号发生器 (信号源)保证高精度测量
如何提高测量时的幅度精度 信号发生器 (信号源)可以为各种元器件和系统测试应用提供精确而高度稳定的测试信号。在射频测试系统中,您可以将测量精度从信号发生器 (信号源)的输出端扩展至被测器件(DUT)。在仪器和被测器件之间的路径中,电缆、元器件和开关的特性可能会降低测量精度。 本文将帮助您提高在使用信号发生器 (信号源)进行测量时的幅度精度。在了解为什么幅度精度很重要以及如何优化幅度精度之前,让我们首先介绍一下射频功率测量的基础知识。 什么是“功率 ? 国际单位制将瓦特 (W) 定义为功率单位;一瓦特等于每秒一焦耳,用于量化衡量能量传递速率。在直流和低频领域,电压和电流的测量非常简单,可以直接测量。功率 (P) 是电压 (V
[测试测量]
利用下一代信号发生器 (<font color='red'>信号源</font>)保证高精度测量
石英晶体测试系统中DDS信号源设计
产生正弦激励信号一般可以通过振荡电路或直接数字频率合成器(Direct Digital Frequency Synthesis,DDS),DDS较振荡电路具有相位噪声小、杂散抑制好、可产生连续波信号、扫频信号和频率捷变信号等优点。石英晶体电参数测试中激励信号的指标如幅度、频率的稳定性对后续的测量精度至关重要。所以系统采用AD9852型DDS作为信号源。石英晶体电参数测试系统中,DDS可以同时产生多路正弦信号,并可对信号的频率、幅度、相位精确控制,用以测量石英晶体电参数,随着对石英晶体频率精度的要求越来越高,DDS的信号源设计及控制具有重要现实意义。 1 π网络法测试原理 在串联谐振状态下,石英晶体等效电路模型如图1所示,C
[单片机]
石英晶体测试系统中DDS<font color='red'>信号源</font>设计
深度剖析四通道信号源技术
信号发生器是科学实验、工业生产等各个领域必不可少的电子仪器,目前,常用的信号发生技术主要有:基于模拟电子技术、锁相频率合成、直接频率合成和直接数字频率合成(DDS)等几种。近几年来,随着科学技术的进步,信号发生技术也获得了充足的发展,并且向高频率、高分辨率、高稳定性和多通道等几方面发展,基于DDS的信号发生技术,具有高分辨率、高稳定性等一系列优点,且能实现多波形、多通道和输出频率从极低频至高频(大于200 MHz)的信号输出,是信号发生技术的发展方向。以美国ADI公司为代表研发、生产了AD9XXX系列DDS芯片,已广泛应用于各类信号发生器及其他各项领域。本文详细介绍由美国ADI公司最新推出的AD9959DDS芯片构成的四通道信号源
[模拟电子]
示波器和信号源之间的无缝互连
常常有人会问,怎样才能把示波器和信号源两者连接起来,实现数据共享呢?其实,鼎阳SDS1000系列示波器是可以将采集到的波形信息以CSV文件的格式发送给鼎阳SDG1000信号源;而SDG1000信号源也可以将CSV文件数据转化为波形信息并发送给信号源,实现示波器和信号源的无缝互连、数据共享。那如何实现呢?鼎阳科技提供了两种方式来传输数据,实现无缝互连。 通过PC电脑传输数据 SDG1000信号源配套有功能强大的任意波形编辑软件EasyWave,可以直接将SDS1000示波器采集的波形信息导入其中: 生成CSV文件格式的波形文件: 将波形文件直接发送到SDG1000信号源任意波形存储空间:
[测试测量]
示波器和<font color='red'>信号源</font>之间的无缝互连
制简易的PC信号源与示波器
我们在电子技术的学习和实验中常常使用到万用表、 信号发生器 、示波器等设备。万用表可以对电子元器件进行检测,也可以测量电路的电压、电流等参数。示波器可在电路实验或电器维修时,观察电路节点的信号波形,以判断前、后级电路是否正常工作。 在学习模拟电子技术时,信号发生器和示波器还可以帮助我们感性地认识放大器、滤波器、振荡器等电路的特性。不过这两台设备价格比较贵,在初学阶段或许不一定非要配置。本文将介绍一种利用几个简单的元器件加一台普通计算机构成的PC 信号源和PC 示波器,成本不到10 元,虽然测量的精度有限,但是对于初学阶段观察使用已经足够了。 外观及使用 如图1、图2 所示分别为PC 信号源和PC 示波器的外观。PC信号源
[测试测量]
制简易的PC<font color='red'>信号源</font>与示波器
全球首个工业级手持式20GHz信号源问世
日前,Hittite微波公司发布了业界第一个电池供电的手持式信号发生器HMC-T2100B ,频率范围可达10MHz~20GHz。在同尺寸及成本的手持信号源中,HMC-T2100B能提供最大的输出功率,最低的谐波,最宽的频率范围。售价仅为14,998美元。 HMC-T2100B非常轻巧,连续波输出的最大功率达27dBm,在40dB的动态范围内功率步进是0.1dB,可适用于自动化测试与测量环境、研发,以及实验室。在1GHz的工作频率时谐波抑制优于-39 dBc;在10GHz的工作频率时杂散水平优于-65 dBc。当工作频率为1GHz时,在100kHz频偏处的相位噪声为-113dBc/Hz。在0到35度温度范围内只有很小
[测试测量]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
热门活动
换一批
更多
最新测试测量文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved