基于CPCI总线的脉冲信号检测系统设计

发布者:zhuanshi最新更新时间:2014-08-22 来源: eefocus关键字:CPCI总线  脉冲信号检测  光电耦合器 手机看文章 扫描二维码
随时随地手机看文章

在工业控制领域,通常有大量的脉冲信号用于控制其他设备或部件的开关或者工作状态切换。这些脉冲信号除了常规计算机系统采用的+5 V接口电平外,还有+12 V、+30 V,乃至更高幅度的接口电平,通常为功率型电流驱动信号。本文提出了一种两级测试系统的设计思路,给出了在较宽的范围内兼容不同接口电平的脉冲信号检测系统的设计方案,采用标准CPCI总线接口设计,具有良好的兼容性和扩展性,适用于产品功能测试或系统集成测试。

1测试系统架构

如图1所示,测试系统采用二级(主控机、下位机)结构设计,由主控计算机(即主控机)、测试客户机(即下位机)、局域网、电缆及运行于各设备中的测试软件共同构成。主控计算机属主控机一级,控制测试客户机,测试任务由主控计算机控制完成。测试客户机控制其对应的测试设备可独立完成设备级的功能测试。整个测试系统通过对被测设备施加激励信号并检测其响应输出的方式,实现对被测没备的闭环测试。


脉冲信号检测板是工作于测试客户机中的测试板卡,其主要功能是接收80路外部脉冲信号,测量并记录每路脉冲信号的脉冲宽度及收到脉冲的时间。

2脉冲信号检测板实现方案

2.1总体设计

脉冲信号特性为:脉冲持续时间为80~500 ms,偏差为±10 ms;驱动电流不小于200 mA.在产品功能测试及系统集成测试阶段,主要考核脉冲信号功能的正确性,故脉冲信号检测板用于检测脉冲信号的发生时间及脉冲持续宽度,要求测量误差不大于±1ms.如图2所示,脉冲信号检测板的核心部分包括光耦接口电路、接口处理FPGA、单片机系统和PCI接口电路。板卡采用标准的6U尺寸CPCI板卡设计,兼容标准6U尺寸的CPCI工控机。


检测板内部主要数据流向及处理流程为:80路脉冲信号通过光电耦合器(光耦)进行隔离变换,转换成检测板内部5 V电平信号;接口处理FPGA对信号进行采样,并将80路脉冲采样数据组帧缓存;单片机读取FPGA中的采样数据,并判断是否检测到有效脉冲信号,将检测到的脉冲信号打上当前时间标签后发送给双口RAM;工控机软件通过CPCI总线定期访问双口RAM,读取数据。

2.2脉冲信号接口

被测脉冲信号为功率驱动信号,用于驱动功率负载,驱动电流通常为几mA至几百mA,采用集电极开路门(OC)形式输出,通常为+12~+30 V信号。为了兼容多种信号电平,并能隔离功率型信号与普通基带电平信号,实现较好的电磁兼容性,本系统采用光电耦合器作为信号隔离与电平转换的接口器件。

TLP121是东芝公司生产的光电耦合器,隔离阻抗为MΩ级,其前向驱动电流(IF)最大为20 mA,后端开关开启和闭合时间均为μs级,可以满足本系统对测量误差不大于1 ms的要求。输入接口电阻设为可调电阻,可适应不同输入电压。[page]

脉冲信号接口电路如图3所示。脉冲信号正线和回线连接至光耦的前端(图3中TLP121的1、3引脚),后端(图3中TLP121的4、6引脚)采用板内5V电源上拉,通过施密特电路74HC14整形后发送至接口处理FPGA.当脉冲信号有效时,光耦前端有电流流过,接口电路输出高电平“1”;脉冲信号无效时,接口电路输出低电平“0”。



2.3接口处理

FPGA由于需要对80路脉冲信号进行检测,采用单片机无法满足并行处理的需求,因此选用FPGA完成脉冲采样功能。接口处理FPGA采用Altera公司的FLEX10K50,工作主频为6 MHz,存储芯片采用EPC1PC8.其主要功能有三部分:分频定时器、采样数据缓存、外围控制逻辑。FPGA对主时钟进行分频,形成周期为1 ms的时钟信号。FPGA每ms对80路脉冲信号完成并行采集一次,将数据存放在寄存器中,同时向单片机发出中断信号,通知单片机发起数据搬移,以及单片机内部的时间计数器自增。采样数据缓存模块用于将80路脉冲信号同时锁存至内部寄存器,单片机每ms全部读取一次。外围控制逻辑用于单片机外围各控制信号的译码,包括控制寄存器、各芯片控制信号译码,以及其他辅助功能的实现。

2.4单片机系统

单片机系统采用Atmel公司的AT89C51,配合32KB外部SRAM 62256以及4 KB双口数据RAMIDT71342.其中,CPCI总线访问双口数据RAM的L端口,8051访问R端口。

单片机工作主频设计为20 MHz.单片机P0口和P2口作为通用的数据线和地址线使用,配合地址锁存器74HC373工作;P1口不使用;P3口中仅使用了P3.2用于接收外部中断,即来自接口处理FPGA的中断。FPGA内部定时器每ms产生一个中断脉冲,用于单片机软件计时器的激励时钟,同时通知单片机读取脉冲信号接口采样数据。

单片机的外部地址空间划分如表1所列。



单片机产生的脉冲信号数据帧格式如图4所示。每个数据帧包含14个字节数据,时间码为4个字节,加电后从0开始计时,单位为ms;采样脉冲数据共10个字节,对应80路脉冲信号。2.5 PCI总线接口板卡采用CPCI接口方式,接口芯片采用PLX公司的PLX9052,与配置EEPROM芯片93CS46配合使用。板卡在PCI总线中工作在从模式下。接口芯片对部数据总线选择低8位数据线与双口RAM连接,测试客户机定期查询每块测试板卡中双口RAM的工作模式,不使用本地中断信号。

 


3软件设计

脉冲信号检测板单片机软件主要完成脉冲采样数据的处理,剔除FPGA产生的采样数据中的无效数据,将检测到的脉冲有效数据打上时间标签后存储到双口数据RAM中。双口RAM中循环存储256组脉冲信号数据,测试客户机定期访问双口RAM,读取检测数据。单片机软件流程如图5所示。

图5中寄存器0x8FFD为配置寄存器,由测试客户机软件写入,用于初始化双口RAM中的数据。



结语

本文提出的两级测试系统的没计思路和基于单片机与CPCI总线的脉冲信号检测系统没计方案,可以适应较宽电压幅度范围的接口电平信号。系统采用标准的CPCI总线接口,具有良好的兼容性和扩展性,能较好地满足对脉冲信号的功能测试。如需要提高测量精度,可缩短FPGA采样间隔来实现。目前,该方案已经大量应用于产品测试和系统集成测试中。

关键字:CPCI总线  脉冲信号检测  光电耦合器 引用地址:基于CPCI总线的脉冲信号检测系统设计

上一篇:理解传统眼图参数测量的局限
下一篇:接线端子的性能测试及其方法和标准

推荐阅读最新更新时间:2024-03-30 22:46

如何实现向高级电机控制的转变
基于采用 无传感器磁场定向控制(FOC) 的 永磁同步电机(PMSM) 的高级电机控制系统快速普及,这种现象的背后有两个主要驱动因素: 提高能效和加强产品的差异化 。虽然有证据表明采用无传感器FOC的PMSM可以实现这两个目标,但需要一个可提供整体实现方法的设计生态系统才能取得成功。利用整体的生态系统,设计人员能够克服实现过程中阻碍系统采用的各种挑战。 为什么选择PMSM? PMSM电机是一种使用电子换向的无刷电机。它经常与无刷直流电机(BLDC)混淆,后者是无刷电机系列的另一个成员,也使用电子换向,但在结构上略有不同。PMSM的结构可针对FOC进行优化,而BLDC电机经过优化后可使用6步换向技术。经过优化后,PMSM可获
[工业控制]
如何实现向高级电机控制的转变
STM8S Timer2_OC1_PWM1输出模式
C语言: Codee#11722 /*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ + 实验平台: STM8S103F2P6 FM 接收实验核心板 + 硬件 : STM8S103F2P6 + 开发平台: IAR For STM8 1.10 + 仿真器 : ST-Link + 日期 : 2010-6-22 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/ #include stm8s.h /******
[单片机]
双机通信在CPCI总线上的实现
在电信、电力、国防等应用领域中,经常要求其所用设备有极高的实时性。当需要在各个设备间进行大容量的信息交换时,传统的网络包交换模式已不能很好地满足实时性的要求。而借助于CPCI总线,两个设备可以互访对方的内存, 具有传输速度快、传输容量大和高可靠性等特点,非常适合大容量的信息传递。国家数字交换系统工程技术研究中心承担的国家863计划项目——“中国第三代移动通信系统”CDMA2000系统集成就选择基于CPCI总线的多SBC平台。各个SBC间的通信效率直接决定了整个系统性能的高低。 目前常用的实时操作系统如VxWorks、Lynx等,都针对CPCI总线实现了消息队列,可用于SBC间的消息通信。但VxWorks、Lynx中消息传递的实
[嵌入式]
光电耦合器的工作原理及应用分析
光电耦合器是一种重要的电子元件,具有广泛的应用领域和多项优势。本文将详细分析光电耦合器的工作原理以及其在现代科技中的应用,并探索其潜力和未来发展方向。 一、光电耦合器的工作原理 光电耦合器是一种能够将光电转换过程实现耦合的器件。光电耦合器主要由发光二极管(Light Emitting Diode,简称LED)和光敏三极管(Phototransistor)组成。 光电耦合器的工作原理可以简单描述为:当外部电流通过LED时,LED会发出光信号。这些发出的光信号经过空间传输后,被光敏三极管所接收。光敏三极管中的光敏区域会将光信号转换为电信号,并输出到接收端电路。 通过光电转换的过程,光电耦合器实现了输入端和输出端之间的电光耦合,实现
[嵌入式]
基于cPCI总线的嵌入式遥测前端处理器系统设计
遥测数据处理系统在航空、航天等军工试验领域有着广泛的应用。在航空飞行试验中.遥测数据处理系统为各类试飞测试数据的实时处理提供了手段和平台,是试飞员、试飞指挥员及试飞工程师协同完成新机试飞必不可少的重要设施,是确保现代飞机试飞安全、提高试飞效率、缩短试飞周期、实现综合试飞的重要手段。 遥测数据处理系统中的核心设备——遥测前端处理器,技术上经历了从分立式、智能式到嵌入式的快速发展。我国遥测前端处理器的研发经历了从引进、合作研制到完全自行研制的历程。 遥测前端处理器是一套嵌入式实时计算机系统,承担着遥测PCM数据的同步、分路、工程单位转换、数据计算、数据分配等实时处理任务。它和遥测系统管理服务器、工作站等设备通过网络联接和系统集成,组成当
[嵌入式]
光电耦合器的内部结构及检测方法
光电耦合器——又称光耦合器或光耦,它属于较新型的电子产品,现在它广泛应用于计算机、音视频……各种控制电路中。由于光耦内部的发光二极管和光敏三极管只是把电路前后级的电压或电流变化,转化为光的变化,二者之间没有电气连接,因此能有效隔断电路间的电位联系,实现电路之间的可靠隔离。 1.、光电耦合器的检测判断光耦的好坏,可在路测量其内部.二极管和三极管的正反向电阻来确定。更可靠的检测方法是以下三种。1. 比较法 拆下怀疑有问题的光耦,用万用表测量其内部二极管;三极管的正反向电阻值,用其与好的光耦对应脚的测量值进行比较,若阻值相差较大,则说明光耦已损坏。 2. 数宇万用表检测法 下面以PCIll光耦检测为例来说明数字万用表检测的方
[电源管理]
<font color='red'>光电耦合器</font>的内部结构及检测方法
简单过压保护电路设计
工作原理:利用光电耦合器的通断与否进行控制。电压正常时,光电耦合器几乎无输出,VT管被反偏而截止。当某种原因使电路电压升高时(零线断线或零线错接成相线等),取样电路次级电压随之升高,光电耦合器满足工作条件。光耦输出电流增大,使VT管偏置电压升高并饱和导通,执行机构继电器动作吸合,切断电源进而达到保护电器的目的。若故障消除,电压随之正常,该电路立即退出工作,恢复电路供电。简单过压保护电路如下图所示:   元器件选择:光电耦合器用4N25或类似品。三极管用***率管3BG12或3BG13均可。继电器触点选用5A以上。线圈工作电压可自定(5V以上至十几伏均可)。用发光二极管LED做续流管,可兼作指示器。需要动手改动的是电源
[电源管理]
简单过压保护电路设计
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved