实时嵌入式产品的测试系统设计

发布者:SereneWanderer最新更新时间:2014-12-22 来源: eccn关键字:测试系统  RTX  FPGA 手机看文章 扫描二维码
随时随地手机看文章

引言

嵌入式系统是以应用为中心,以计算机技术为基础,能够适应实际应用中对功能、可靠性、成本、体积、功耗等严格要求的专用计算机系统。它是先进的计算机技术、半导体技术以及电子技术与各个行业的具体应用相结合的产物。在一些特定领域,它被要求能够实时响应外部的请求并处理相应的计算,最后把结果及时地反馈给用户或者外设。随着嵌入式应用领域的迅速扩大,人们对嵌入式软件质量提出了更高的要求,如何对日益复杂的嵌入式软件进行快速有效的测试成了目前的关注热点。

1 设计原理

1.1 系统需求

本文采用的被测试嵌入式系统如图1所示,是一套运行有飞行控制软件的嵌入式系统。它需要对飞行的姿态、轨迹做出计算,并通过总线的方式与舵机、发动机、导引头、惯性测量单元进行交互。测试的对象为该嵌入式平台上运行的飞行控制软件,其余的外设由测试系统仿真实现。本文主要讨论测试系统的设计与实现。嵌入式系统所使用的核心器件是DSP芯片,它拥有多种接口,有1路A/D、1路D/A、8路开关量、2路串行422接口、2路串行485接口。通过各种接口的通信完成要求的功能。系统运行后将长时间处于每隔5ms与外设完成1次交互的状态,其中1次交互包括2次请求收发数据(状态和控制数据)、传输所有开关量、A/D的数据。测试系统具体要求如下:首先,由工控机(由测试系统模拟,如图2所示)发送装订参数给嵌入式设备;接着,嵌入式设备根据装订参数进行初始化,并处于等待命令状态;工控机发送开始运行命令给嵌入式设备;嵌入式设备收到开始命令后,进入周期循环状态。

周期循环状态:

①嵌入式系统会向外部1号设备(由测试系统模拟)请求外设1控制数据,外部1号设备需要在2 ms内把数据发送给嵌入式系统。

②嵌入式系统会向外部2号设备(由测试系统模拟)请求外设2控制数据,外部2号设备需要在2 ms内把数据发送给嵌入式系统。

③上位机(由测试系统模拟)需要在发送完外设2的控制数据后的1 ms完成对嵌入式系统相关数据的采集。整个循环周期要求严格控制在5 ms以内。

通信流程如图3所示。

1.2 设计思想

设计一套能够符合需求要求的测试系统,对于测试系统有5点要求:第一,能够及时响应DSP以中断方式的数据请求;第二,有足够的性能解析数据,发送数据;第三,拥有良好的人机交互界面;第四,能够管理测试过的用例及结果;第五,能够灵活地增加故障,如通信故障、指令故障、数据故障。

较高实时性的要求使得在设计测试系统时大大增加了系统的复杂度和限制了可用的解决方案。Windows是一种分时操作系统,处理中断的能力不是很稳定,有时候将不能满足嵌入式系统要求的条件。另外,分时操作系统定时器精度差,漂移现象严重,存在隐含的不确定的线程

调度机制。但是这里需要Windows操作系统上的一些高级特性,如功能强大的图形化接口(GUI)支持,支持多种开发工具及应用程序,众多廉价的第三方硬件及驱动的支持,丰富的Win32应用程序接口。

RTX(Real-tline Extenslon for Control of Windows),是向Windows平台加入了一个实时扩展子系统(RTSS)。它独立的基于抢占式的RTX线程调度机制允许RTSS线程优先于所有的Windows线程和中断,持续中断响应频率30 kHz以上,最大IST处理延迟不超过16μs;提供高速准确的实时时间响应,定时器最小周期为100μs,时钟最小分辨率为100 ns。特别适合于飞行模拟器、复杂视频监控系统、视频图像处理、转台、机器人、导弹发射装置、火炮等典型的既有图形又要求实时的控制伺服系统。它是一种基于Windows平台的硬实时解决方案。Wirldows处

理人机接口等通用GUI任务,实时扩展子系统用于进行实时控制和实时的数据采集,它们之间的数据传递机制通过进程间通信的方式,应用共享内存、信号量等机制实现。[page]

综上考虑,给出两种设计方案。

2 设计方案

2.1 Windcws+RTX(工控机+接口卡)

Windows+RTX方案如图4所示,此种设计方案软件部分分为3层。

Windows用户界面层。在Windows操作系统上开发部分软件,负责数据库的管理、用例的添加、运行结果的保存,提供一套优秀界面呈现给用户。

RTX逻辑控制层。主要负责用例运行,实时地与被测系统交互,满足被测系统相关数据的请求,保存被测系统发出的状态数据。

外设驱动层。为了满足对系统100%的测试,还需要有测试系统与被测系统之间的通信接口卡。从硬件划分包括1台工控机、2块ISA总线RS422通信卡、2块PCI总线RS485通信卡、1块A/D卡、开关量采集卡、D/A卡。这些硬件板卡通过ISA、PCI总线的方式连接到测试平台里,测试平台管理所有板卡的驱动程序,使其与被测系统形成闭环。

这样,3层的软件结构就能够顺利地运行用例,实现对系统的完整的功能测试。

2.2 Windows+Verilog(工控机+FPGA板卡+接口芯片)

第2套方案使用的是Windows+Verilog,如图5所示。在这种方案中,使用FPGA来管理各个接口,并通过PCI总线与工控机通信。PCI总线能够把各种接口的数据上传到工控机,同时把工控机的数据下载到被测试系统上。[page]

系统也是3层结构,上两层与第1种方案基本一样,但在外设驱动层上不再是从多块板卡之间取数送数,而是单一地与FPGA板卡通过制定好的协议进行通信,而后的接口芯片采集、编码等工作都交给FPGA完成。

3 方案比较

3.1 两种方案优缺点比较

表1详细比较了上述2套方案的优缺点。第2种设计方案中,因为有了FPGA器件,使得原来考虑不周的设计可以只重新配置硬件就得以修改,减少重新制版的周期、经费等一系列不确定因素,达到更广泛的测试目的。

3.2 不同操作系统优缺点比较

此外,方案的实行也可以考虑在工控机上直接运行一些实时操作系统,如DOS、VxWorks等等。DOS是单任务实时系统,人机交互界面差,没有网络功能。表2比较了Windows+RTX和VxWorks两种方案的优缺点。

4 用例管理软件设计

在软件上层,需要设计出带有数据库的用例管理系统,它需要管理用例的定义、简介、组别、运行时间、过程数据、结果数据,并能够作用例回归测试的用例管理层。用例运行前需要收集用户输入的各种参数,并从相应的文件位置提前把相关数据读取到内存里,提前准备数据。用例运行时,RTX层会有相应的CPU空闲时间,而用例管理层会利用这段时间进行运行状态的显示。用例运行结束后,相应的标志位会被置位,用例管理层读到相应的状态后会主动向RTX层索要运行的各种数据和结果,并把相应的数据存入数据库,写入日志,并呈现到界面上。

结语

试验证明,上述设计的测试系统在整机联调过程中运行状态良好,符合对系统各个模块功能全面测试的要求。本文针对目前嵌入式系统测试这一热点问题,提出了1种实时嵌入式软件的测试系统的结构框架,并且按照这个思路实现了对黑盒(功能)测试的测试系统。下一步工作就是开发1个嵌入式软件的通用测试平台,能够同时对多种型号、多种接口的嵌入式系统进行测试。此方案也适用于视频图像处理、视频监控系统。

关键字:测试系统  RTX  FPGA 引用地址:实时嵌入式产品的测试系统设计

上一篇:LD0、QLDO、VLDO的设计原理及测试
下一篇:基于SOPC的扭振信号测量系统实现研究

推荐阅读最新更新时间:2024-03-30 22:51

基于XC2V1000型FPGA的FIR抽取滤波器的设计
1 引言   抽取滤波器广泛应用在数字接收领域,是数字下变频器的核心部分。目前,抽取滤波器的实现方法有3种:单片通用数字滤波器集成电路、DSP和可编程逻辑器件。使用单片通用数字滤波器很方便,但字长和阶数的规格较少,不能完全满足实际需要。使用DSP虽然简单,但程序要顺序执行,执行速度必然慢。现场可编程门阵列(FPGA)有着规整的内部逻辑阵列和丰富的连线资源,特别适用于数字信号处理,但长期以来,用FPGA实现抽取滤波器比较复杂,其原因主要是FPGA中缺乏实现乘法运算的有效结构。现在,FPGA集成了乘法器,使FPGA在数字信号处理方面有了长足的进步。本文介绍用Xilinx公司的XC2V1000型FPGA实现FIR抽取滤波器的设计方法。
[嵌入式]
基于FPGA的USB2.0虚拟逻辑分析仪的设计与实现
使用并行触发方式,可以选择最多八级的并行触发。在进行触发设置时,除设置触发方式(选择并行触发)和进行频率选择以外,还需要进行触发字、屏蔽位和并行深度的设置。其Verilog HDL算法源程序如下:   if ((({dbuf4 ,dbuf3 , dbuf2 ,dbuf1 }^ TrigWord )&enbit ) == 4'h0)    begin    if(dcount ==control )    begin    TrigFlag=2'b01; Trigpoint = MemABus_Wr ;         dcount="3"'b000;     end      dcount = dcoun
[嵌入式]
基于ARM和FPGA的声纳波形产生系统设计
1、引言   最佳声纳系统的设计需要从声纳波形、声纳信道和声纳接收机三方面进行综合考虑 。在声纳信道一定的假设下,需要设计最佳声纳波形和最佳接收机,使声纳系统能在给定的声纳环境中对目标有最佳的检测效果。工作在浅水中的主动声纳,其性能主要受限于混响级。根据波形选择与信道匹配的原则,针对混响信道,所选的声纳波形应使其模糊度函数尽量与混响信道散射函数不重合,而与声传输信号散射函数尽量重合 。基于这样的原则,常用的声纳信号单频信号(CW)、线性调频信号(LFM)抑制混响的能力比较如下:在检测静止或低速目标时,LFM和短CW较长CW有更好的混响抑制能力,但短CW波只适合近距离目标;在检测高速运动目标时,长CW脉冲是最合适的信号形式 。由此
[单片机]
基于ARM和<font color='red'>FPGA</font>的声纳波形产生系统设计
基于FPGA的DS/CDMA解扩解调模块设计与实现
在CDMA通信系统中,用于基站信号转发的接收机是一个核心模块,一台接收机只是处理一路用户的解扩解调显然是不合理的,为了提高接收机的效率和降低成本,有必要设计一种多路CDMA信号通用解扩解调平台。而FPGA具有功能强大,开发工程投资小,周期短,可反复编程修改,保密性能好,开发工具智能化等优点,本项目决定采用FPGA作为设计平台;本文首先建立了CDMA信号的扩频调制与解扩解调系统模型,然后提出设计这样一个多路CDMA信号通用解扩解调平台。该平台将保证处理CDMA解扩解调的通用性,既可以将此平台用在CDMA信号蜂窝基站的建设上,也可以用在CDMA卫星地面的基站建设上。   图1 DS/CDMA解扩解调系统原理框图 1 DS/CDM
[嵌入式]
电动机性能虚拟仪器测试系统的设计与实现
摘要:将现代虚拟仪器技术应用于电动机性能并测试领域,可充分发挥虚拟仪器技术开发效率高、灵活性和兼容性强以及可重用度高的特点。设计并实现了多路并行电动机的在线测试系统;使用PID控制算法控制定标参量,通过TCP/IP协议实现了测试数据的远程共享和用户对测试系统的远程操控。 关键词:虚拟仪器 电动机测试 PID TCP/IP 随着计算机技术的飞速发展,计算机辅助测试(CAT)系统在电机行业得到了普及 。现代虚拟仪器技术引入电动机测试领域后,通过虚拟仪器应用软件将计算机与标准化虚拟仪器硬件结合起来,实现了传统仪器功能的软件化与模块化,从而达到了自动测试与分析的目的 ,大大缩短了系统开发周期,降低了系统开发成本。 本文设计的电动机性
[应用]
基于FPGA的卷积码的编/译码器设计
  卷积码是Elias在1955年最早提出的,稍后,Wozencraft在1957年提出了一种有效译码方法,即序列译码。Massey在1963年提出了一种性能稍差,但比较实用的门限译码方法,由于这一实用性进展使卷积码从理论走向实用。而后Viterbi在1967年提出了最大似然译码法,该方法对存储器级数较小卷积码的译码很容易实现,并具有效率高、速度快、译码器简单等特点,人们后来称其为维特比算法或维特比译码,广泛应用于现代通信中。本文主要论述了基于Xilinx公司的FPGA的卷积编码器及相应的维特比译码器的研究,并在幸存路径存储与译码输出判决方面提出了改进算法,从而使译码器结构得到简化。    1 卷积码的编码原理与实现   卷积
[嵌入式]
基于<font color='red'>FPGA</font>的卷积码的编/译码器设计
 电动汽车分布式电机驱动测试系统研究与应用
1 引言   随着能源和环境问题日益受到重视,电动汽车以其清洁无污染、能量效率高、低噪声、能源多样化等优点研究发展迅速。电动汽车作为一种交通工具,工作环境复杂多变,其电机驱动系统需要满足可靠性高、效率高、调速性能好、造价低等性能要求。因此电动汽车的电机驱动系统测试是一项重要研究内容。   电机驱动系统包括电机及其控制器,系统测试中需较长时间采集驱动系统内部和外部的信号,用到多个测量仪器,输出大量数据。电动汽车电机驱动系统研究的深入对其测试的效率和精度有了更高的要求,传统的手工测试方法已无法满足试验需求。随着计算机技术、通信技术和自动控制技术的发展,以PC机和工作站为基础的虚拟仪器和分布式网络化测试技术为主的现代化开放式测试系统
[汽车电子]
 电动汽车分布式电机驱动<font color='red'>测试系统</font>研究与应用
莱迪思Automate解决方案集合加速工业自动化系统的开发
莱迪思半导体公司(NASDAQ:LSCC),低功耗可编程器件的领先供应商,宣布推出全新Lattice Automate™解决方案集合,进一步扩展基于低功耗FPGA、全面的解决方案集合产品系列。Automate包括软件工具、工业IP核、模块化硬件开发板和软件可编程参考设计和演示,有助于简化和加速实现机器人、具有预测性维护功能和可扩展的多通道马达控制以及实时工业网络等应用。Automate实现的智能工业系统将在未来智能工厂、仓库和商业建筑的自动化过程中发挥至关重要的作用。 物联网和网络边缘计算等技术趋势正在推动智能自动化系统的发展,从而提升效率和保障工人安全。市场调研机构Fortune Business Insights的数据显示
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved