教学中常用的大型演示电表,其灵敏度低,缺少低电压、小电流挡。在需要精确测量低电压、小电流的实验中,由于存在较大的误差,难以达到令人满意的实验效果。本电路使用运放集成电路来提高灵敏度,从而弥补了以上不足。本电表可应用于以下实验:闭合电路的欧姆定律;晶体三极管的电流分配和放大作用;通过测量,找到金属导线的电阻与导线长度、横截面积及材料的关系;电路端电压与外电路电阻的关系;电池的串联和并联;伏安法测电阻;用电流表和电压表测电池的电动势和电阻;单根导线切割磁力线产生感生电流。高灵敏度演示电表电路原理如图所示。
关键字:高灵敏度 演示电表 精确测量
引用地址:高灵敏度演示电表
上一篇:简易流量表
下一篇:555 单稳电路用作电容表或电阻表电路
推荐阅读最新更新时间:2024-03-30 22:52
ams三刺激颜色传感器精确测量具有重大生物学意义的蓝光
电子网消息,全球领先的高性能传感器解决方案供应商艾迈斯半导体(ams)推出三刺激传感器AS7264N,提供的颜色测量可精准匹配人眼对可视光谱的反应。这一新型传感器还能精确地测量蓝光波长,研究认为蓝光波长与生活作息不规律、眼睛加速老化和眼疲劳等影响健康的关键因素有关。 AS7264N采用紧凑型4.5mm x 4.7mm x 2.5mm LGA封装,小巧的尺寸使其非常适用于灯具和互联的传感器组件。AS7264N还有望应用于以人为中心的照明和智能楼宇调控等新兴应用。 新款传感器依托于艾迈斯半导体成功的AS72xx产品平台,该平台提供用于光谱和照明应用的完整光和颜色传感器产品系列,涵盖从近紫外到近红外光。该产品系列中的三刺激颜色
[半导体设计/制造]
精确的频率测量和时间测量
分辨率和精度 分辨率定义为计数器区别相近频率的能力,如下图。这与显示位数和输入信号的频率有关。显示位数是越多越好。 但显示位数必须得到精度的支持。如果有其它误差使计数器的测量结果偏离真实频率时,其高位数并无实际意义。也就是说计数器提供的可能是对不正确频率的非常精细的读数。 真实测量精度是随机误差和系统误差的函数。随机误差是分辨率不确定度的来源,它包括量化误差(在闸门时间窗内围绕最终计数的不确定度),触发误差(如在噪声尖峰上触发)和时基的短期不稳定度。系统误差是测量系统内的偏移,它使读数偏离信号的真实频率。这里包括时基晶体的影响,如老化,以及温度和电网电压变化等等。 下图中比较了两台计数器。计数器A有好的分辨率和
[测试测量]
Vishay推出获AEC-Q100认证的超小型高集成度高灵敏度光传感器
Vishay推出获AEC-Q100认证的超小型、高集成度、高灵敏度环境光传感器 器件动态范围高达228 klux,分辨率为0.0034 lx/ct,支持深色透镜设计,适用于汽车和消费电子应用 宾夕法尼亚、MALVERN —2020年10月20日 — 日前,VishayIntertechnology, Inc.宣布,其光电子产品部推出 通过AEC-Q100认证的新款环境光传感器---VEML6031X00 ,适用于感光透镜很暗,灵敏度要求非常高的汽车和消费电子应用。Vishay Semiconductors VEML6031X00将高灵敏度光电二极管、低噪声放大器、16 位 ADC 和红外(IR)通道集成在2.67 mm x
[传感器]
电池精确测量和温度稳定的重要性
锂离子电池由于拥有能量密度高、 电压 高、自放电率低,以及无记忆效应等优势,因而逐渐成为使用充电电池的便携应用产品的常用技术。
电池管理的常见难题
在选择锂离子电池时,必须对之予以正确管理,以实现安全工作,并获得每循环周期最高容量和最长寿命,而通常采用的方法就是加入电池管理单元(BMU)。要实现安全工作,BMU就必须能够确保电池单元在电压、温度和 电流 方面经常处于其生产规格之内。这意味着在设计电池管理系统时,必须能够考虑到最坏条件。以充电端电压为例,标准笔记本电池的建议单元电压为4.25V以下。
为保持单元电压不超过上限,一般都会建议先取得BMU中的电压测量标准偏差,并用充电端电压减去4倍的标准偏差值。例
[电源管理]
Vishay新一代微型红外接收器具有更高灵敏度、噪声抑制能力
宾夕法尼亚、 MALVERN — 2018 年 3 月22 日 — 日前,Vishay Intertechnology, Inc.(NYSE 股市代号:VSH)宣布,推出用于红外遥控器的新一代微型红外(IR)接收器模块。Vishay Semiconductors TSOP11xxx、TSOP12xxx、TSOP13xxx、TSOP14xxx和TSOP18xxx系列器件提高了黑暗环境和嘲杂环境下对红外信号的灵敏度,还具有更好的抑制射频噪声的能力。器件具有非常高的脉宽准确度,适合对编码要求苛刻的应用场景,甚至SIRCS和RCMM等最严格的脉宽标准。 今天发布的这颗器件可用于电视机、机顶盒、音响、空调、视频投影机、照相机、游戏
[传感器]
无源射频器件插入损耗如何精确测量?感兴趣的看过来
通带插入损耗是无源射频器件的重要指标。常见的单台功率计输入输出测试法不能获得准确结果。本文解释了产生误差的原因,并描述了一种在工程中极为实用的双功率计测试法。本文还强调了测试电缆和接头对测试精度的重要作用,而这些问题在工程中是往往容易被忽略的。 通带插入损耗是无源射频器件的主要指标。典型的插入损耗值相对较小,因此用普通的测量方法很难达到实验室的测试精度。在实验室和工厂,通常采用网络分析仪来 测量插入损耗。用常见的无线电发射机作为信号源和射频功率计如BIRD43 或同类的仪器很难精确地测量出大功率状态下的插入损耗值。实际上,在大功率状态下不能直接测量插入损耗,插入损耗值必须通过被测器件(以下简称DUT)的 输出输入射频功率比进行计算而
[测试测量]
进行精确的电阻测量 -测量参数第六章
电阻测量原理 乍一看到把电阻测量作为一章可能感到奇怪。毕竟每一位电子工程系的学生第一周内就会学到确定阻值的最简单的欧姆定律: V = I ×R (公式6.1) 尽管这一公式非常简洁,但精确测量电阻实际是极富挑战性的参数测量。因为公式过于简单化,忽略了电阻会产生热量,继而又反过来影响电阻值本身这一事实。因此应将上述公式更准确地重写为: V = I×R (T) (公式6.2) 公式中电阻(R) 是温度(T) 的函数。通常把这种被测电阻实际值随电流产生热量而变化的现象称为焦耳自热效应。 另一项需考虑的因素是电阻测量所用电缆的电阻。在测量非常小的电阻时,必须使用开尔文测量技术。我们已在前面几章中介绍了开尔文测量基础知识,您可以把这些技
[测试测量]
精确测量微小信号
一般来讲,当用示波器在低于10 mV/div的档位进行测量时,通常会通过限制测量带宽的方法将噪声 尽可能地压低。而R&S RTO却不同:它甚至可以在最敏感的小信号档位提供全带宽,并且用超过 7位有效位的 A/D 转换器来进行信号量化。 图 1:R&S RTO 示波器甚至在垂直方向灵敏度达 1 mV/div 情况下也可提 供全带宽测量。 1 您的任务 移动设备在变得越来越小的同时功能却越来越多,客户还期望电池使用时间能更长一点。降低耗电量是此类装置设计中面临的最大考验。尽量保持低压供电,以便在高速数据传输情况下将耗电量降至最小。因此设计中大量采用了低摆幅信号与低压差分信号 (LVDS) 。低摆幅度信号在模拟和混合电路中
[测试测量]
小广播
热门活动
换一批
更多
最新测试测量文章
更多热门文章
更多每日新闻
更多往期活动
- 推陈出“芯“——TI 带你领略智能手机黑科技在线直播 预报名+看直播 好礼让你嗨翻全场!
- Vicor 更好的供电方式,更高的性能、功能性及可靠性
- 救火车和你一起学ARM系列活动
- 答题赢好礼|英飞凌带你走进碳化硅 (SiC)世界
- 【已结束】PI 直播【适合工业市场辅助电源的碳化硅和氮化镓 IC】(9:30入场)
- 感谢有你,愿一路同行!——eeworld感恩节送书活动
- 泰克70周年庆 了解新品 参与掀盖有礼活动 最多可获得6次抽奖机会
- TI 处理器主题月:三场直播精彩这个八月!报名且看直播就能得好礼!更有提问奖相送!
- 报名有礼:【TI C2000在实时控制系统中的新特性】网络直播诚邀您参与!
- 有奖直播|物联网时代的典型应用
11月23日历史上的今天
厂商技术中心