基于LabVIEW的数控机床网络测控系统--基于B/S模式的软件设计 1

发布者:colchery最新更新时间:2015-03-09 来源: eefocus关键字:LabVIEW  数控机床  数据采集  DSC 手机看文章 扫描二维码
随时随地手机看文章
5 基于B/S模式的数控机床网络测控系统软件设计

5.1下位测控机的数据采集、显示及存储回放软件设计

下位机测控服务器系统软件包括接口仪器驱动软件和应用软件两部分。其中,接口仪器驱动程序是完成对某一特定仪器的控制与通信的软件程序集合,是连接上层易用软件和底层软件的纽带和桥梁。每个仪器模块都有自己的软件驱动程序,仪器厂商将其以源码的形式提供给用户,用户在应用程序中调用仪器驱动程序。应用程序包含两方面的程序:实现虚拟面板功能的前面板软件程序和定义测试功能的流程图软件程序。它主要功能是给用户提供操作仪器、显示数据的人机接口;实现数据的采集、分析处理、显示、存储等;并将需要在客户端显示的数据发送到Web服务器,同时从Web服务器接收来自远程客户端的控制命令。

5.1.1数控机床测控软件的结构化设计

本文中数控机床数据采集系统的软件基本结构包括数据采集、数据处理、存储回放及用户界面等几部分。测控软件设计时可以采用面向对象的设计分析方法,通过仔细地规划和设计,使程序结构清晰,便于维护、修改、增加。软件程序结构图如图5.1所示。

 

软件程序结构图



结构化的程序主要包含以下功能模块(结构图见上图5.1所示):

①A/D通道校准模块

采集之前对采集通道校准以保证A/D通道的准确度。

②电流采集模块

电流采集模块采用AD转换器的数据采集卡,试验中采集数控机床的消耗电流。

RRBDP软件对采集到的数据进行各种形式的滤波,曲线拟合、平滑等处理。

③传感器校准模块

对电流传感器做标定以确保传感器输出信号尽可能接近真实值。

④激光干涉仪数据模块

通过USB接口通讯,获取干涉仪采集的长度并经过分析后送往其它模块。

⑤摄像头数据采集及显示模块

该模块负责完成视频采集显示和分析数控机床运动情况。

⑥测试数据分析模块

对测试数据进行分析、匹配,建立数学模型并送往曲线显示模块。

⑦实时曲线显示模块

实时显示消耗电流、定位精度以及坐标的关系曲线,采用具有很好的视觉效果的LabVIEW中的XY图来绘制曲线控件驱动。波形直观、精细、易于观察。

⑧波形分析模块

对关系曲线(即波形)依据需要研究的分项进行分析,将分析结果及波形做为输出数据以特定文件格式存储起来。

⑨测试日志记录配置模块

记录试验数控机床的信息、试验次数、试验日期、试验人员以及输出数据文件目录。

⑩历史曲线回放模块及历史数据

导出模块载入以前试验后生成的数据和波形文件并回放出来,确保以前的试验结果可追溯。

5.1.2数据显示与存储回放程序的设计

本章数据显示与存储回放程序设计所需的基础知识包括:数控编程、数控机床操作、电路基础、VC++、C++、Web Service、LabVIEW和测试仪器等。基于以上程序开发结构和基础,设计的各功能模块显示界面如下图5.2所示:

 

LabVIEW数据实时采集显示界面

 

图5.2是LabVIEW数据实时采集显示界面,软件的操作过程说明如下:

(1)AD通道校准是指对采集板卡的计量校准,如果测得模拟量没有在精度要求范围内,软件有自己校准功能。

(2)参数设置界面是按照用户的要求来配置一些参数,比如说位移的起始点、终止点、步长等参数。

(3)测试界面如上图5.2所示,也是软件的主界面,但选择好测试方式后,(硬件部分连接好的情况下)就开始了实时采集与显示。对于采集的数据,测试完毕后,点击保存可以保存到Excel表中,也可以保存成特定格式的数据,在将此数据倒到分析软件中,进行无偿的分析,从而可以进行相应的补偿。但是对于工厂中大量的测试数据数据库是首先存储方式。可以利用LabSQL方式向数据库数据表添加记录,假设数据表为位移Displacement表。具体步骤如下:

①建立与数据库的连接。首先通过ADO Connection Create.vi创建一个Connection对象,然后利用ADO Connection Open.vi建立与数据库的连接。数据库由ADO Connection Open.vi的ConnectionString指定,此参数由前面板的字符串控件提供,如下图5.3所示。[page]

②生成SQL命令,执行命令。在前面板table控件中输入表名,Current和Error控件中输入字段值。在程序框图中使用Format Into String生成SQL命令,将它连接到ADO Connection Execute.vi即可执行,同时可在前面板Command Text控件显示此命令。

③断开与数据库之间的连接。利用ADO Connection Close.vi关闭Connection对象,并使用ADO Connection Destroy.vi删除Connection对象。

 

向数据表添加记录的程序框图



(4)历史数据回放界面,可以根据用户需要,按照测试的日期时间打开所需要回放查询的文件。数据回放界面绘制出的相应历史曲线如图5.4所示。

 

历史数据回放界面



在实时与历史曲线显示部分,趋势曲线能够形象清楚地描绘出现场数据在一段时间内的分布趋势,通过趋势图,操作员可以根据各个现场数据采集点的数据的变化趋势看出各个量的变化情况,且能查看任何历史时刻的数据,供现场操作人员作出适当的处理。

5.1.3数据记录监控模块DSC的应用

(1)测控系统在上述功能的实现过程中,遇到了三个实际工程问题:

 

①监控界面中现场数据显示的速度慢,最慢达到5秒的延迟,很显然这不符合工业现场过程控制实时性的要求。

②由于LabVIEW软件本身不像FIX工控软件一样,带有实时数据库。当系统比较小时,即在控制点数少的情况下,实现监控功能可以利用全局变量的概念,将监视或控制的现场测量点都看作是全局变量,暂且称它们为“全局变量库”。然后把LabVIEW实现的各个功能看作是一个子程序,每一个子程序都是从全局变量库中取数据或向里写数据。也就是将这个“全局变量库”看作是一个实时数据库,现场每一个测量点都与库中的参数一一对应。这种方法在控制点数少的情况下还是可行的,但是,当系统是大中型的情况即现场控制点数很多的时候,在实践中发现,使用全局变量的方法,不仅编程量大,而且数据查找起来没有数据库查找起来方便快捷,另外,全局变量一直是编程人员所尽量避免使用的方法。

③由于在实际的过程控制监视中,要求各个界面之间来回的切换,实现界面的友好操作性。FIX监控软件通过编程有调用各个界面的函数,可以方便的实现界面之间的切换。然而,在用LabvEIW实现界面之间切换的过程中,将上述的“全局变量库”作在“数据总揽”的界面里,其它各个子程序(界面),例如,“实时和历史曲线”、“历史数据”、各个流程图等,都是和它进行数据交换。所以“数据总揽”子程序起着实时数据库的作用,它在系统运行的过程中不能被关闭,本课题是利用VI Sevrer技术使得“数据总揽”子程序在系统己开运行时就以最小化的形式开始运行,保证数据的实时性。但是,考虑到“历史数据”和“历史曲线”两个子程序由于需要存取历史数据的原因,而在系统运行的过程中不能被关闭,所以也将它们始终处于最小化的状态运行。按照上述的做法,发现在系统运行过程中,各个界面之间切换起来速度较慢,这不能充分满足现场过程控制的实时性和可靠性的要求。

(2)基于DSC模块的问题解决方法

第一个问题,数据读和写的速度有明显的差别。利用Datasocket技术编程实现数据的读和写,写数据的速度却很快。所以可能是编程中出现的数据缓冲或者程序中等待事件的发生执行效率低的原因,决定数据显示部分通过在前面板直接用Datasocket连接OPC服务器。结果数据显示速度明显达到几百毫秒,满足了实时要求。而且这种方法开发时间短,效率高。[page]

用LabVEIW能够初步实现数据采集、显示和存储等功能的前提下,考虑到NI公司推出的LabVIEW一附加模块——数据记录监控模块DSC(Datalogging and Superviosry Control Module),此模块是专为过程控制而设计开发的,是专用于轻松设计和维护分布式监控系统的理想软件工具。利用这个模块可以很方便地完成与设备的连接,包括LabVEIW实时目标模块和OPC设备。从系统概览到节点执行,该模块提供了内置式的开发工具,来成功记录数据、警报和事件;显示生产数据随时间变化的趋势;同时还可通过网络数据库,利用SQL/ODBC标准查询从中提取数据。该模块的应用增强了搜索和提取数据的灵活性,提高了数据记录的可靠性和保护能力 。

相比其它附加模块,DSC模块有以下六个特点:内置的网络开发工具;用于实现数据共享和与第三方设备结合;应用的安全性设置;针对分布式监控的开发工具;用于分布式数据记录的网络数据库;实时和历史趋势曲线。

(3)“LabVEIW+DSC”相结合运用“LabVEIW+DSC”相结合,软件体系结构图如图5.5所示。

 

“LabVEIW+DSC”软件体系结构图



为提高系统的开放性,选用了“LabVIEW+OPC”的设计方法。就是用LabVIEW作为上位机监控软件,采用先进的网络通信技术——DataSocket技术,通过OPC服务器接口来实现现场数据共享。这里采用的OPC服务器是Matrikon公司研发的,它作为一中间桥梁,实现了监控软件LabVIEW和现场智能组件之间的数据通信,通过OPC配置项建立与底层设备的数据采集点的一一对应关系。如下图5.6所示:

 

OPC服务器的配置项

 

图5.6是OPC服务器的配置,其中项名Name是用户自己定义的对应于现场的数据采集点,Item Path必须符合OPC服务器与MODBUS协议的语法要求,即“[port].Device. 0~4:”,同时设置该项是读数据还是写数据以及数据的类型、更新时间等等 。

LabVIEW访问OPC的方法有很多种,本文采用的是通过DSC模块中Tag Configuration Editor引擎,建立LabVIEW和OPC服务器的连接。DSC模块使用Tag连接OPC数据项,通过Tag Configuration Editor,可以将DSC的Tag与OPC数据项对应起来,生成.scf文件,相当于LabVIEW的实时数据库,如图5.7所示。

 

.scf文件图

关键字:LabVIEW  数控机床  数据采集  DSC 引用地址:基于LabVIEW的数控机床网络测控系统--基于B/S模式的软件设计 1

上一篇:基于LabVIEW的数控机床网络测控系统--网络通信关键技术研究 2
下一篇:基于LabVIEW的数控机床网络测控系统--基于B/S模式的软件设计 2

推荐阅读最新更新时间:2024-03-30 22:54

基于DSP的X射线能谱数据采集系统的设计方案
  本文以X射线透射衰减规律为基础,提出了一种基于DSP的X射线能谱数据采集系统的设计方案。本方案重点介绍了用于能谱数据采集的硬件电路和软件设计,其中,硬件电路主要由前置放大、滤波、主放大、峰值保持电路组成,软件主要由 TMS320F2812对经过预处理后的脉冲信号进行多道脉冲幅度分析操作,并最终绘制出X射线能谱图。经调试结果表明本系统具有电路设计简单,采样精度高,抗干扰能力强等特点。   0 引言   X 射线是由高能电子在物质中作减速运动或由原子内层轨道电子的跃迁产生的,所以穿透性很强,广泛应用于射线检测、介质识别等多个方面。在射线能量一定时,X 射线辐射强度的衰减程度只与所穿过的介质有关,即X射线穿透不同介质时,透射的强
[嵌入式]
基于DSP的X射线能谱<font color='red'>数据采集</font>系统的设计方案
数控机床的故障诊断方法
  数控机床具有机、电、液集于一身,技能布满和常识布满的特征,有较高主动化水陡峭出产功率。如今,数控设备的广泛运用是工业公司跋涉设备技能水平有用办法,也是翻开的必经之路。而数控设备的数控系统是其间心肠址,它的牢靠作业,直接联络到悉数设备作业正常与否。也即是说,当数控系统缺点发作后,怎样活络确诊的缺点出处并处理疑问使其康复正常,是跋涉数控设备运用率的火急需要。   可是,我国现稀有控机床上的数控系统种类极点繁复,既有国产的各档数控系统,也有来自国际各国的系统。就作者地址公司而言,各式数控机床上运用到的系统就有好几种,如FANUC O-TC,O-TD系统,西门子810,820,880系统,三菱系统,广州数控等等。各型系统凌乱程度良
[嵌入式]
labview-tcp通信总结
1、波形图是每次将久数据清空,然后显示新数据,而波形图表是将新数据接到旧数据的后面。趋势图可以将新的数据添加到曲线的尾端,从而反映实时数据的变化趋势,主要用于显示实时的数据。而图表在画图之前会自动清空当前图表,然后把输入的数据画成曲线。 2、字符串常量中的\r\n这里是算四个字符,而不是指转义字符。 3、通过stop按钮来停止程序的运行,可以采用while循环和事件结构,事件触发条件改为值改变,然后按键机械动作改为保持转换直到释放,保持转换直到释放相当于两次改变事件stop的值。 4、while循环是首先读入stop的值,然后在执行一次后在根据这个值来判断,当while里含有将stop改为true的语句,这个值将写入判断条件,再
[测试测量]
一种混合动力电池监测模块的设计实现
引言 分布式电池监测系统具有应用广泛,可扩展的优点; CAN总线具有传输速率高、可靠性好的优点,将二者结合应用,典型电池监测与管理系统结构如图1所示。 其中远程数据采集单元即电池监测模块。 监测模块的功能定义 功能实现的前提是在不影响或对电池性能影响小到可以忽略的基础上实现,离开这个前提则监测模块的设计会失去意义,因为在实际应用中往往是多个电池串连在一起应用,一个电池的失效必然导致整个电池包出问题。 监测模块将在上述前提下实现下列功能: 接受上层控制器的控制; 实现电池数据的采集,准确反应电池的物理参数,如电压,温度; 将采集到的数据传送给上层控制器,实现数据共享。 监测模块要达到的物理性能 在采样速率
[单片机]
一种混合动力电池监测模块的设计实现
基于LabVIEW实现网络语音通信
LabVIEW具有强大的信号采集功能和网络通信功能,这些功能使得LabVIEW的用户可以很容易编写出具有强大网络通讯能力的LabVIEW应用软件,实现远程虚拟仪器。为了将人的语音或某个地点现场的声音信号远传,可以依托LabVIEW这些功能,将联网计算机声卡上采集的语音信号,进行远程语音数据的点对点传输。应用环境的网络拓扑图,如图1所示。 1 利用DataSocket技术传输语音 LabVIEW实现网络通信有3大类方法:(1)使用网络通信协议编程实现网络通信,可以使用的通信协议类型包括TCP/IP协议、UDP、串口通信协议等;(2)使用基于TCP/IP的数据传输协议DSTP的DataSocket技术实现网络通信;(3)使
[测试测量]
基于<font color='red'>LabVIEW</font>实现网络语音通信
labview的深入探索-----状态机的基本类型之标准状态机
状态机机的基本类型之标准状态机 标准状态机是使最为广泛的状态机,也称为古典状态机或者经典状态机。LV的标准状态机VI模板用的就是这种。 我把标准型状态机理解成条件跳转型状态机,也就是在一个状态中,根据不同的条件,跳转到另一个状态。标准型状态机非常适合用图形方式来描述,PLC的SFC流程图就是我们说的标准状态机。 NI提供了一个状态机的组件,它就是典型的标准状态机。看看它的用法。 NI 状态图组件,提供一个状态图编辑器,在编辑器中,可以设计各种状态和状态之间的转换条件,如图 上面是我模拟了提款机做的示意程序,根据我们绘制的状态图,LV可以自动生成状态机,可以选择两种方式.做为连续运行的VI和单次运行的子VI 上面的
[测试测量]
<font color='red'>labview</font>的深入探索-----状态机的基本类型之标准状态机
基于单片机和CPLD的高精度数据采集系统设计
1 引言 数据采集系统的任务,就是采集传感器输出的模拟信号转换成计算机能识别的数字信号,送入计算机,将计算机得到的数据进行显示或打印,以便实现对某些物理量的监视,其中一部分数据还将被生产过程中的计算机控制系统用来控制某些物理量。数据采集系统性能的好坏,主要取决于它的精度和速度。在保证精度的条件下,应有尽可能高的采样速度,以满足实时采集、实时处理和实时控制对速度的要求。 当前科学技术的发展对数据采集系统的采样速率、分辨率、精度、接口及抗干扰能力等提出越来越高的要求,许多领域越来越多地要求具有高精度A/D转换和实时处理功能。同时,市场对支持更复杂的显示和通信接口的要求也在提高,如环境监测、电表、医疗设备、便携式数据采集以及工业传感
[单片机]
基于单片机和CPLD的高精度<font color='red'>数据采集</font>系统设计
基于C8051F000的多通道数据采集范围控制系统
1 引 言      在实际应用中,对被控对象的物理参数(温度、湿度、位移、电流、电压等)在一定的范围内进行控制,是单片机的典型应用之一。很多宏观要求精确控制的场合,其微观控制过程,仍可归结为是对某些参数变化范围的控制。如,传统的三相异步电机从启动到正常运行,其电流、电压和温度的变化;抽水塔水位的变化;机床刀具的行程变化及数字电表的自动量程变换等。这些控制过程最显著的特点是:被控物理量都是一个变化范围,而非某一个精确的“点”。有效控制物理量变化范围的方法很多,本文重点介绍利用C8051F000单片机片内8路高性能的12位ADC数据采集系统和可编程窗口检测器,实现对多路参数变化范围控制的硬件组成和软件设计方法。 2 C805
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved