将一个LVDT(线性可变差分变压器)连接到一个微控制器是有挑战性的工作,因为一个LVDT需要交流输入的激励和对交流输出的测量,以确定其可动核的位置(参考文献1)。多数微控制器都缺乏专用的交流信号生成与处理能力,因此需要外部电路来产生无谐波、波幅与频率稳定的正弦波信号。要将LVDT的输出信号波幅与相位转换成与微控制器内部ADC兼容的格式,一般需要添加外部电路。
为使PSoC开关电容带通滤波器产生最高保真度的正弦波,要用尽可能高的过采样速率,因数约为33,即每个正弦波周期33步。得到的正弦波平滑得足以驱动能衰减所有残余高阶谐波的LVDT。采用一个可变增益放大器标定PSoC的内部电压基准,就可以在方波滤波前对其波幅作粗略的控制。为了补偿波形的直流偏移电压,放大器对2.6V内部模拟接地基准进行缓冲,并驱动用作LVDT模拟地回路的输出脚。
LVDT输出包括一个幅度可变的正弦波电压,其相对于正弦波激励电压的相位角要经受一个相当大的可变移位,有时相移要超过180。。LVDT的一个信号驱动PSoC的一个可变增益放大器,其输出送至一个开关电容低通滤波器,并跟随一个用于同步整流的调制器。整流后的信号驱动一个输出脚,以及一个PSoC的开关电容ADC。
将LVDT输出加在同步整流器上,后跟随一个低通滤波器,这样产生一个直流电压,它可以送至ADC或直接驱动一个模拟反馈控制系统。在PSoC微控制器中,连接到ADC的低通开关电容滤波器需要相同的采样时钟来驱动两个电路,因此,PSoC 11位Δ-S ADC的转换速率大约是低通滤波器角频率的一半。同步整流产生的纹波频率是激励频率的两倍,因此更容易用低通滤波器去除。将低通滤波器的角频率重新确定为激励频率的三分之一,就可以在等于或低于1 LSB(最低有效位)标准偏差下,使LVDT输出的测量达到11位分辨率。
用作为计数器链配置的逻辑电路块将 PSoC 24 MHz 内部系统时钟分频,就得到开关电容器模拟电路块需要的所有数字时钟信号。在加电或复位之后,PSoC的CPU配置所有可配置的模拟与数字电路块,并开始运行。以后硬件便能够激励LVDT并以每秒500次采样速率测量其输出,无需CPU的进一步干预。当 PSoC CPU运行在12 MHz时,处理ADC内部活动以及中断只消耗不到3%的CPU资源。
对于计算LVDT位置以及在LCD模块上以文本形式显示结果时有大量PSoC资源可用。有四个模拟电路块、五个逻辑电路块和很多I/O脚都可以用于支持更高要求的应用。图3显示了附加功能可以使用的配置块。
关键字:LVDT PSoC 测量位置 微控制器
引用地址:测量位置的PSoC微控制器与LVDT
为使PSoC开关电容带通滤波器产生最高保真度的正弦波,要用尽可能高的过采样速率,因数约为33,即每个正弦波周期33步。得到的正弦波平滑得足以驱动能衰减所有残余高阶谐波的LVDT。采用一个可变增益放大器标定PSoC的内部电压基准,就可以在方波滤波前对其波幅作粗略的控制。为了补偿波形的直流偏移电压,放大器对2.6V内部模拟接地基准进行缓冲,并驱动用作LVDT模拟地回路的输出脚。
LVDT输出包括一个幅度可变的正弦波电压,其相对于正弦波激励电压的相位角要经受一个相当大的可变移位,有时相移要超过180。。LVDT的一个信号驱动PSoC的一个可变增益放大器,其输出送至一个开关电容低通滤波器,并跟随一个用于同步整流的调制器。整流后的信号驱动一个输出脚,以及一个PSoC的开关电容ADC。
将LVDT输出加在同步整流器上,后跟随一个低通滤波器,这样产生一个直流电压,它可以送至ADC或直接驱动一个模拟反馈控制系统。在PSoC微控制器中,连接到ADC的低通开关电容滤波器需要相同的采样时钟来驱动两个电路,因此,PSoC 11位Δ-S ADC的转换速率大约是低通滤波器角频率的一半。同步整流产生的纹波频率是激励频率的两倍,因此更容易用低通滤波器去除。将低通滤波器的角频率重新确定为激励频率的三分之一,就可以在等于或低于1 LSB(最低有效位)标准偏差下,使LVDT输出的测量达到11位分辨率。
用作为计数器链配置的逻辑电路块将 PSoC 24 MHz 内部系统时钟分频,就得到开关电容器模拟电路块需要的所有数字时钟信号。在加电或复位之后,PSoC的CPU配置所有可配置的模拟与数字电路块,并开始运行。以后硬件便能够激励LVDT并以每秒500次采样速率测量其输出,无需CPU的进一步干预。当 PSoC CPU运行在12 MHz时,处理ADC内部活动以及中断只消耗不到3%的CPU资源。
对于计算LVDT位置以及在LCD模块上以文本形式显示结果时有大量PSoC资源可用。有四个模拟电路块、五个逻辑电路块和很多I/O脚都可以用于支持更高要求的应用。图3显示了附加功能可以使用的配置块。
上一篇:SUSAN边缘检测算法性能分析与比较
下一篇:吉时利插卡式3700系列数据采集系统简介
推荐阅读最新更新时间:2024-03-30 22:55
基于AVR单片机的自行车行车记录仪,包括软硬件具体方案
1. 引言 自行车行车记录仪(以下简称码表)在国内外已经有了广泛的应用,但是不管是国外的还是国产的码表都存在着很多缺点。 首先,对于国产码表来说,缺点主要有: 安装相当麻烦,根据使用者评价,一般安装需要半小时以上,而国外的进口码表则只要5分钟即可安装完毕,所以在设计该码表时需要在这方面进行改进。 即时速度显示混乱,其实这是计算精度不够造成,速度高于25M/S以后(特别是30M/S以后)当前速度就开始有波动,速度越快波动越大,这个问题还导致最高速度不可信,所以在设计时选择的CPU必须是具有较高计算速度,且实时性能较好的,这里选用了AVR的MEGA64高性能8位单片机,此单片机资源丰富,最高速度可以达到16MIPS/S。
[嵌入式]
以MSP430设计的电子电能表
简介:介绍16位RISC信号处理芯片MSP430的管脚功能、内部功能框图、测量原理和以MSP430C32X设计的电子电能表。 摘 要:介绍16位RISC信号处理芯片MSP430的管脚功能、内部功能框图、测量原理和以MSP430C32X设计的电子电能表。 MSP430是美国TI公司推广的16位超低功耗微控制器。它采用精简指令集(RISC)结构。 种结构与分时复用数据线和指令线的集中指令集(CISC)结构不同,它将数据线和指令线分离,使得取指令和取数据可同时进行,执行速度很快;因这种微控制器的指令多为单字节指令,故程序存储器的空间利用率也很高。MSP430有基于闪存的F1××系列、基于闪存且带有LCD驱动器的F4××系列、带有
[单片机]
基于单片机的串联锂离子电池组监测系统设计
介绍一个以51系列单片机为主控单元的串联锂离子电池组监测系统。采用差分放大器和模拟开关轮流检测单体电池电压,利用单片机的IO接口和DS18B20实现单总线多点温度检测。系统简单经济,经过试验,能可靠、准确地对串联锂离子电池组进行监测。
具有高电压、高容量、循环寿命长、安全性能好等优点的锂离子电池,在便携式电子设备、电动汽车、空间技术、国防工业等多方面具有广阔的应用前景。由若干节锂离子电池经串联组成的动力锂离子电池组目前应用最为广泛。由于每节单体电池的电压不一致,使用中电池不允许过充电、过放电,电池的性能和寿命受温度影响较大等特点,必须对串联锂离子电池组进行监测,确保在使用中锂离子电池具有良好的状态,或者使用中电池出现问题立即报
[电源管理]
调试好的nRF24L01库文件 单片机源程序
单片机源程序如下: #include nRF24L01Drv.h #include USART.h #include stdio.h #include config.h #include intrins.h #include spi.h /** * 1.改多路方法: * NUM_USED_PIPE 改为使用的路数, RX_ADDRESS 分别指定 RX的地址, * RX_PLOAD_WIDTH 改为每一路的PAYLOAD * NRF24L01_RxPacket 里面知道是哪一路在接收 * * * 2. 发送时自动将CONFIG 备份,然后切换TX后再切换回去 * 并且备份RX_ADDR_P0 * * 3. 通道0,
[单片机]
基于PIC24FJ256DA210设计的16位MCU开发技术
PIC24FJ256DA210 是16位 MCU ,具有能和LCD显示器接口的图像控制器(GFX)模块,高达96KB的数据RAM。PIC24FJ256DA210高性能CPU采用改进型哈佛架构,32MHz时的性能高达16MIPS,内部振荡器8MHz,17位x17位单周期硬件乘法器,32位x16位硬件除发器。器件工作电压2.2V-3.6V,数字输入可达5.5V。主要用在消费类电子如电热控制,无绳电话,遥控单元,家用电器,销售终端(POS)以及手提医疗设如血糖仪,血压机,手提ECG等。本文介绍了PIC24FJ256DA210系列主要特性,方框图和PIC24FJ256DA210开发板主要特性,方框图以及详细电路图。 图1。PIC24
[单片机]
单片机电子秒表时钟 数码管显示
电子秒表时钟 数码管显示 可设置时间 可用于秒表暂停、清零蜂鸣器按键音 单片机源程序如下: #include reg51.h #include delay.h #include intrins.h unsigned char code LED ={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x40}; //定义共阴极LED7段显示码 unsigned char dispbit ={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f}; //定义数码管位码 unsigned char hour=23,min=58,sec=52,
[单片机]
工作于不同振荡方式的PIC系列单片机
PIC系列单片机可工作于不同的振荡器方式。用户可以根据其系统设计的需要,选择下述四种振荡方式中的一种,其振荡的频率范围在DC.20/25MHz之间,如表1所示。 用户可以根据不同的应用场合,从表l所示的四种振荡方式中选择一种(使用PIC编程器时也需作这种选择的操作),以获得最佳的性能价格比。其中,LP振荡器方式可以降低系统功耗,RC振荡器方式可节省成本。 建立PIC源程序时,其振荡器方式由配置寄存器CONFIG的D1位和DO位来决定,如表2所示。 1.内部晶体振荡器/陶瓷振荡器 在LP、XT和HS这三种方式下,需要在微控制器引脚OSC1/CLKIN和OSC2/CLKOUT的两端接一石英晶体
[单片机]
51单片机学习第二天
(1)数字电路中只有两种电平: 高电平和低电平 高电平:5V或者3.3,取决于单片机电源。 低电平:0V (2)RS232电平:计算机串口的电平 高电平:-12V 低电平:+12V 由上面的两个可知,当我们使用单片机跟电脑通信的时候,需要通过各种元器件将单片机的电平转换成计算机可识别的电平才能跟电脑进行通信。 二、进制 二进制 十六进制 三、二进制逻辑运算 四、8051的引脚封装 五、单片机工作的基本时序,一共四种 (1)振荡周期:也称时钟周期,是指为单片机提供时针脉冲信号的振荡源的周期。 (2)状态周期:每个状态周期为时针周期的2倍,是振荡周期经二分频后得到的。 (3)机器周期:一个机器周期包含6个状态周期
[单片机]