概述
在过去,马达的维修一般是指处理传统的三相马达故障,这些故障主要是由进水、灰尘、油脂、轴承损坏、马达轴心偏离,或者仅仅是由正常老化造成的。但是,随着电子马达的使用,马达的维修已经发生了很大变化,更多的是对调速马达驱动(ASD)进行维修。这些驱动有许多特殊的测量问题,就连经验丰富的专家也会对此感到头疼。
随着新技术的涌现,现在已经可以在第一次安装和维护驱动期间利用数字多用表对其进行精确的电气测量,并诊断损坏的元器件以及其他可能会引起早期故障的因素。
排障方法
技术人员会采用许多不同的方法来诊断电路故障,缩短排障时间的技巧就在于快速地跟踪故障,并将因此造成的停机时间降至最低。最有效的排障程序是首先从马达开始,然后顺藤摸瓜一直到电源电路,首先查找最明显的问题。对于连接松动导致的故障,则需要更换工况良好的器件。
选择正确的测试工具来进行驱动、马达和和连接的排障是至关重要的,尤其是在测量马达驱动输出信号的电压、频率和电流时。福禄克新型的Fluke 87V数字多用表集成有可选的低通滤波器,可以精确地测量驱动的输出信号,其测试结果和马达驱动控制器的显示保持一致。技术人员再不必猜测驱动是否工作正常,直接可测得给定的控制设备的电压、电流或频率的准确值。
驱动测量
输入端的测量
任何高质量的真有效值多用表均可测量输入到ASD的功率。在不带负载测量相-相电压时,输入电压读数的准确度应该在2%范围之内。明显的负载失衡会导致马达工作异常,一旦发现,应立即纠正。
输出端测量
反过来说,由于ASD向马达端子上输出的是脉宽调制(PWM)的非正弦电压信号,所以一般的真有效值多用表不能够可靠地测量脉宽调制(PWM)马达驱动输出端的信号。一般的真有效值数字多用表测得的是加到马达上的非正弦信号的热效应值,而马达控制器的输出电压读数仅显示基波成分(一般从30~60Hz)的真有效值。
产生这种矛盾的原因就在于带宽和屏蔽。现在许多真有效值数字多用表的带宽达20kHz或更宽,使其不但能够响应基波成分(这是马达真正响应的成分),而且会响应脉宽调制驱动产生的高频成分,并且如果数字多用表没有屏蔽掉高频噪声的话,驱动控制器的高频噪声电平就会造成测量结果的更大偏差。就是采取了带宽和屏蔽措施,许多真有效值多用表所显示的读数仍然会比驱动控制器所显示的值高出20%~30%。
福禄克的新型87V多用表采用了可选的低通滤波器,在排障时,可在驱动本身或马达端子上精确测量驱动输出侧的电压、电流和频率。利用滤波器,87V多用表读出的电压和频率(马达速率)应该和相关联的驱动控制显示屏的显示(如果有的话)相一致。当驱动没有显示屏可供观察时,在马达的位置进行这些测量是非常有用的。
安全地测量
在进行任何电气测量之前,应该掌握相关的安全知识。如果使用不当,任何仪器都不能保证绝对安全,并且许多设备根本就不适合测量调速马达。另外,在特殊的工作环境和进行特殊的测量时还要使用必要的个人防护用品。如果可能的话,尽量不要一个人单独工作。
电气测试设备的安全等级
美国国家标准协会(ANSI)和国际电工委员会(IEC)是为测试设备制造商定义安全标准的主要独立机构。IEC 61010标准第二版为测试设备的安全规定了两个基本参数:额定电压和测量种类级别,额定电压是设备能够进行测量的最大连续工作电压,种类级别描述了给定种类的测量环境。大多数三相ASD装置应该被认为属于CAT III类测量环境,使用480V或600V配电系统提供电源。在使用数字多用表对这些高能系统进行测量时,应确保其至少满足CAT III 600V的要求,最好满足CAT IV 600V/CAT III 1000V的要求。种类级别和电压极限一般会在前面板的输入端子上查到。新型的Fluke 87V同时满足CAT IV 600V 和CAT III 1000V的要求,可确保操作人的人身安全。
进行测量
以下的测量程序都是针对利用87V多用表在控制板的端子板上测量480V的三相驱动装置而设计的。这些程序同样适用于由单相或三相电源供电的较低电压的三相驱动。在进行这些测试时,马达运行于50Hz的频率下。
输入电压
在驱动处测量连接到驱动输入端的交流电压。
(1)选择87V多用表的交流电压功能;
(2)将黑色探头连接至其中一个三相输入端子,该端将作为参考相;
(3)将红色探头连接至剩下两相的其中一相的输入端子,记录读数;
(4)保留黑色探头不动,将红色探头连接至第三相输入端子,记录读数;
(5)确保这两个读数之差不超过2%。
输入电流
在测量输入电流时一般都需要一个电流钳附件。在大多数情况下,不是输入电流超过87V多用表可测量的最大电流,就是不能够“断开电路”进行串联地测量电流。无论电流钳属于哪种类型,要确保所有读数之间的差异不超过3%,以保证适当的平衡。
● 交流电流钳(i200、80i-400、80i-600A)
(1)将电流钳连接至87V多用表的公共端和400mA输入插孔;
(2)选择mA/A ac(交流电流)功能;
(3)依次用电流钳夹住每一输入电源的相线,并记录各自的读数。由于这些电流钳在每1A的电流下输出1mA的电流,所以87V多用表上显示的毫安读数值即为以安培为单位的实际相电流值。
● 霍尔效应型(AC/DC)电流钳(i410、i-1010)
(1)将电流钳连接至87V多用表的公共端和V/Ω输入插孔;
(2)选择87V多用表的交流电压功能;
(3)按下黄色的按钮,使用低通滤波器。这样,多用表即可抑制驱动控制器产生的所有高频噪声。一旦使用了低通滤波器,多用表即处于600mV手动量程模式下;
(4)依次用电流钳夹住每一输入电源的相线,并记录各自的读数。由于这些电流钳在每1A的电流下输出1mV的电压,所以多用表上显示的毫伏读数值即为以安培为单位的实际相电流值。
输出电压
在驱动上或马达端子上测量交流输出电压。
(1)将黑色测试线插入到公共插孔,红色测试线插入到V/Ω插孔;
(2)选择87V的交流电压功能;
(3)将黑色探头连接至其中一个三相输出电压或马达端子,该端将作为参考相;
(4)将红色探头连接至剩下两相的其中一相的输出电压或马达端子;
(5)按下黄色按钮,使用低通滤波器,记录下读数;
(6)保留黑色探头不动,将红色探头连接至第三相输出电压或马达端子,记录读数;
(7)确保这两个读数之差不超过2%,参见图3。读数应该和控制器显示屏(如果有的话)显示的值一致;
(8)如果不使用低通滤波器,多用表测得的输出电压读数将会高出10%~30%,和普通的数字多用表测量结果一样,参见图4。[page]
马达速率
测量马达速率时,将电压作为参考测量输出频率,仅需在使用低通滤波器时进行频率测量即可,可以在任意两个相电压或马达端子之间进行测量。
(1)将黑色测试线插入到公共插孔,将红色测试线插入到V/Ω插孔;
(2)选择87V多用表的交流电压功能;
(3)将黑色探头连接至其中一个三相输出电压或马达端子,该端将作为参考相;
(4)将红色探头连接至剩下两相的其中一相的输出电压或马达端子;
(5)按下黄色按钮,使用低通滤波器;
(6)按下Hz(赫兹)按钮,以Hz为单位显示的读数即是马达的速率,参见图5。如果没有87V多用表的低通滤波器,则不可能正确地进行测量,参见图6。
输出电流
像测量输入电流一样,测量输出电流通常也需要电流钳附件。
● 交流电流钳(i200、80i-400、80i-600A)
(1)将电流钳连接至87V多用表的公共端和400mA输入插孔;
(2)选择mA/A ac(交流电流)功能;
(3)依次用电流钳夹住每一输出相线,并记录各自的读数。由于这些电流钳在每1A的电流下输出1mA的电流,所以多用表上显示的毫安读数值即为以安培为单位的实际相电流值。
● 霍尔效应型(AC/DC)电流钳(i410、i-1010)
(1)将电流钳连接至多用表的公共端和V/Ω输入插孔;
(2)选择87V多用表的交流电压功能;
(3)按下黄色的按钮,使用低通滤波器,这样多用表即可抑制驱动控制器产生的所有高频噪声。一旦使用了低通滤波器,多用表即处于600mV手动量程模式下;
(4)依次用电流钳夹住每一输入电源的相线,并记录各自的读数,参见图7。由于这些电流钳在每1A的电流下输出1mV的电压,所以87V多用表上显示的毫伏读数值即为以安培为单位的实际相电流值。如果没有87V的低通滤波器,则不可能正确地进行测量,参见图8。
对于那些至少需要20A工作电流的马达,通过使用电流钳测量频率即可确定马达速率。直到现在,噪声一直是影响使用霍尔效应型电流钳测量电流的准确度的因素。以下介绍如何使用低通滤波器进行精确测量的方法。
● 用霍尔效应型(AC/DC)电流钳测量马达速度(i410、i-1010)
(1)将电流钳连接至87V多用表的公共端和V/Ω输入插孔;
(2)选择多用表的交流电压功能;
(3)按下黄色的按钮,使用低通滤波器;
(4)用电流钳夹住其中一根输出相线,确认87V多用表的电流读数至少为20A(显示的为20mV);
(5)按下Hz(赫兹)按钮,现在读数将马达速率显示为频率测量的结果。
● 用交流电流钳测量马达速率(i200、80i-400、80i-600A)
(1)将电流钳连接至87V的公共端和400mA输入插孔;
(2)选择mA/A ac(交流电流)功能;
(3)用电流钳夹住其中一根输出相线,确认87V多用表的电流读数至少为20A(显示的为20mA)。
(4)按下Hz(赫兹)按钮,现在读数将马达速率显示为频率测量的结果。
直流母线测量
要实现马达驱动的正常工作,直流母线必需足够可靠。如果母线电压不正确或不稳定,变压器二极管或电容就可能被损坏。直流母线的电压应该大约为相-相输入电压的1.414倍。对于480V的输入来说,直流母线的电压应该接近679VDC。在驱动端子板上,直流母线一般被标以DC+、DC-或B+、B-。按以下步骤测量直流母线。
(1)选择87V的直流电压功能;
(2)将黑色的探头连接至DC-或B-端子;
(3)将红色的探头连接至DC+或B+端子。
母线电压应该和上述例子中提到的电压相一致,并且相对稳定。为了检查母线上交流纹波的总量,将87V多用表的功能切换至交流电压功能。对于一些小型的驱动,只有将驱动拆开,才可测量母线。如果接触不到母线,则可以利用87V多用表的最小/最大峰值功能通过输出电压信号测量直流母线的电压。
(1)将黑色测试线插入到公共插孔,将红色测试线插入到V/Ω插孔;
(2)选择87V多用表的交流电压功能;
(3)将黑色探头连接至其中一个三相输出电压或马达端子,该端将作为参考相;
(4)将红色探头连接至剩下两相的其中一相的输出电压或马达端子;
(5)按下MIN MAX(最小值/最大值)按钮;
(6)按下(最小/最大峰值)按钮;
(7)在最小/最大峰值功能下显示的读数即为直流母线电压值。
准确度和安全
调速马达驱动(ASD)为工业带来了很大的好处,可节省能源、实现更精确地控制、延长马达和设备的使用寿命。使用87V多用表所带的滤波器,技术人员可以精确地测量ASD马达的电压和频率,并确保其工作正常。
除了可以精确地测量ASD外,Fluke 87V多用表还具有新型的温度计功能,满足CAT IV 6000VH和CAT III 1000V环境使用的要求,可以承受高达8kV的电压脉冲,大大降低了浪涌和击穿的危险。
关键字:Fluke 数字多用表 调速马达
引用地址:利用Fluke 87V数字多用表测量调速马达
在过去,马达的维修一般是指处理传统的三相马达故障,这些故障主要是由进水、灰尘、油脂、轴承损坏、马达轴心偏离,或者仅仅是由正常老化造成的。但是,随着电子马达的使用,马达的维修已经发生了很大变化,更多的是对调速马达驱动(ASD)进行维修。这些驱动有许多特殊的测量问题,就连经验丰富的专家也会对此感到头疼。
随着新技术的涌现,现在已经可以在第一次安装和维护驱动期间利用数字多用表对其进行精确的电气测量,并诊断损坏的元器件以及其他可能会引起早期故障的因素。
排障方法
技术人员会采用许多不同的方法来诊断电路故障,缩短排障时间的技巧就在于快速地跟踪故障,并将因此造成的停机时间降至最低。最有效的排障程序是首先从马达开始,然后顺藤摸瓜一直到电源电路,首先查找最明显的问题。对于连接松动导致的故障,则需要更换工况良好的器件。
选择正确的测试工具来进行驱动、马达和和连接的排障是至关重要的,尤其是在测量马达驱动输出信号的电压、频率和电流时。福禄克新型的Fluke 87V数字多用表集成有可选的低通滤波器,可以精确地测量驱动的输出信号,其测试结果和马达驱动控制器的显示保持一致。技术人员再不必猜测驱动是否工作正常,直接可测得给定的控制设备的电压、电流或频率的准确值。
驱动测量
输入端的测量
任何高质量的真有效值多用表均可测量输入到ASD的功率。在不带负载测量相-相电压时,输入电压读数的准确度应该在2%范围之内。明显的负载失衡会导致马达工作异常,一旦发现,应立即纠正。
输出端测量
反过来说,由于ASD向马达端子上输出的是脉宽调制(PWM)的非正弦电压信号,所以一般的真有效值多用表不能够可靠地测量脉宽调制(PWM)马达驱动输出端的信号。一般的真有效值数字多用表测得的是加到马达上的非正弦信号的热效应值,而马达控制器的输出电压读数仅显示基波成分(一般从30~60Hz)的真有效值。
产生这种矛盾的原因就在于带宽和屏蔽。现在许多真有效值数字多用表的带宽达20kHz或更宽,使其不但能够响应基波成分(这是马达真正响应的成分),而且会响应脉宽调制驱动产生的高频成分,并且如果数字多用表没有屏蔽掉高频噪声的话,驱动控制器的高频噪声电平就会造成测量结果的更大偏差。就是采取了带宽和屏蔽措施,许多真有效值多用表所显示的读数仍然会比驱动控制器所显示的值高出20%~30%。
福禄克的新型87V多用表采用了可选的低通滤波器,在排障时,可在驱动本身或马达端子上精确测量驱动输出侧的电压、电流和频率。利用滤波器,87V多用表读出的电压和频率(马达速率)应该和相关联的驱动控制显示屏的显示(如果有的话)相一致。当驱动没有显示屏可供观察时,在马达的位置进行这些测量是非常有用的。
安全地测量
在进行任何电气测量之前,应该掌握相关的安全知识。如果使用不当,任何仪器都不能保证绝对安全,并且许多设备根本就不适合测量调速马达。另外,在特殊的工作环境和进行特殊的测量时还要使用必要的个人防护用品。如果可能的话,尽量不要一个人单独工作。
电气测试设备的安全等级
美国国家标准协会(ANSI)和国际电工委员会(IEC)是为测试设备制造商定义安全标准的主要独立机构。IEC 61010标准第二版为测试设备的安全规定了两个基本参数:额定电压和测量种类级别,额定电压是设备能够进行测量的最大连续工作电压,种类级别描述了给定种类的测量环境。大多数三相ASD装置应该被认为属于CAT III类测量环境,使用480V或600V配电系统提供电源。在使用数字多用表对这些高能系统进行测量时,应确保其至少满足CAT III 600V的要求,最好满足CAT IV 600V/CAT III 1000V的要求。种类级别和电压极限一般会在前面板的输入端子上查到。新型的Fluke 87V同时满足CAT IV 600V 和CAT III 1000V的要求,可确保操作人的人身安全。
进行测量
以下的测量程序都是针对利用87V多用表在控制板的端子板上测量480V的三相驱动装置而设计的。这些程序同样适用于由单相或三相电源供电的较低电压的三相驱动。在进行这些测试时,马达运行于50Hz的频率下。
输入电压
在驱动处测量连接到驱动输入端的交流电压。
(1)选择87V多用表的交流电压功能;
(2)将黑色探头连接至其中一个三相输入端子,该端将作为参考相;
(3)将红色探头连接至剩下两相的其中一相的输入端子,记录读数;
(4)保留黑色探头不动,将红色探头连接至第三相输入端子,记录读数;
(5)确保这两个读数之差不超过2%。
输入电流
在测量输入电流时一般都需要一个电流钳附件。在大多数情况下,不是输入电流超过87V多用表可测量的最大电流,就是不能够“断开电路”进行串联地测量电流。无论电流钳属于哪种类型,要确保所有读数之间的差异不超过3%,以保证适当的平衡。
● 交流电流钳(i200、80i-400、80i-600A)
(1)将电流钳连接至87V多用表的公共端和400mA输入插孔;
(2)选择mA/A ac(交流电流)功能;
(3)依次用电流钳夹住每一输入电源的相线,并记录各自的读数。由于这些电流钳在每1A的电流下输出1mA的电流,所以87V多用表上显示的毫安读数值即为以安培为单位的实际相电流值。
● 霍尔效应型(AC/DC)电流钳(i410、i-1010)
(1)将电流钳连接至87V多用表的公共端和V/Ω输入插孔;
(2)选择87V多用表的交流电压功能;
(3)按下黄色的按钮,使用低通滤波器。这样,多用表即可抑制驱动控制器产生的所有高频噪声。一旦使用了低通滤波器,多用表即处于600mV手动量程模式下;
(4)依次用电流钳夹住每一输入电源的相线,并记录各自的读数。由于这些电流钳在每1A的电流下输出1mV的电压,所以多用表上显示的毫伏读数值即为以安培为单位的实际相电流值。
输出电压
在驱动上或马达端子上测量交流输出电压。
(1)将黑色测试线插入到公共插孔,红色测试线插入到V/Ω插孔;
(2)选择87V的交流电压功能;
(3)将黑色探头连接至其中一个三相输出电压或马达端子,该端将作为参考相;
(4)将红色探头连接至剩下两相的其中一相的输出电压或马达端子;
(5)按下黄色按钮,使用低通滤波器,记录下读数;
(6)保留黑色探头不动,将红色探头连接至第三相输出电压或马达端子,记录读数;
(7)确保这两个读数之差不超过2%,参见图3。读数应该和控制器显示屏(如果有的话)显示的值一致;
(8)如果不使用低通滤波器,多用表测得的输出电压读数将会高出10%~30%,和普通的数字多用表测量结果一样,参见图4。[page]
马达速率
测量马达速率时,将电压作为参考测量输出频率,仅需在使用低通滤波器时进行频率测量即可,可以在任意两个相电压或马达端子之间进行测量。
(1)将黑色测试线插入到公共插孔,将红色测试线插入到V/Ω插孔;
(2)选择87V多用表的交流电压功能;
(3)将黑色探头连接至其中一个三相输出电压或马达端子,该端将作为参考相;
(4)将红色探头连接至剩下两相的其中一相的输出电压或马达端子;
(5)按下黄色按钮,使用低通滤波器;
(6)按下Hz(赫兹)按钮,以Hz为单位显示的读数即是马达的速率,参见图5。如果没有87V多用表的低通滤波器,则不可能正确地进行测量,参见图6。
输出电流
像测量输入电流一样,测量输出电流通常也需要电流钳附件。
● 交流电流钳(i200、80i-400、80i-600A)
(1)将电流钳连接至87V多用表的公共端和400mA输入插孔;
(2)选择mA/A ac(交流电流)功能;
(3)依次用电流钳夹住每一输出相线,并记录各自的读数。由于这些电流钳在每1A的电流下输出1mA的电流,所以多用表上显示的毫安读数值即为以安培为单位的实际相电流值。
● 霍尔效应型(AC/DC)电流钳(i410、i-1010)
(1)将电流钳连接至多用表的公共端和V/Ω输入插孔;
(2)选择87V多用表的交流电压功能;
(3)按下黄色的按钮,使用低通滤波器,这样多用表即可抑制驱动控制器产生的所有高频噪声。一旦使用了低通滤波器,多用表即处于600mV手动量程模式下;
(4)依次用电流钳夹住每一输入电源的相线,并记录各自的读数,参见图7。由于这些电流钳在每1A的电流下输出1mV的电压,所以87V多用表上显示的毫伏读数值即为以安培为单位的实际相电流值。如果没有87V的低通滤波器,则不可能正确地进行测量,参见图8。
对于那些至少需要20A工作电流的马达,通过使用电流钳测量频率即可确定马达速率。直到现在,噪声一直是影响使用霍尔效应型电流钳测量电流的准确度的因素。以下介绍如何使用低通滤波器进行精确测量的方法。
● 用霍尔效应型(AC/DC)电流钳测量马达速度(i410、i-1010)
(1)将电流钳连接至87V多用表的公共端和V/Ω输入插孔;
(2)选择多用表的交流电压功能;
(3)按下黄色的按钮,使用低通滤波器;
(4)用电流钳夹住其中一根输出相线,确认87V多用表的电流读数至少为20A(显示的为20mV);
(5)按下Hz(赫兹)按钮,现在读数将马达速率显示为频率测量的结果。
● 用交流电流钳测量马达速率(i200、80i-400、80i-600A)
(1)将电流钳连接至87V的公共端和400mA输入插孔;
(2)选择mA/A ac(交流电流)功能;
(3)用电流钳夹住其中一根输出相线,确认87V多用表的电流读数至少为20A(显示的为20mA)。
(4)按下Hz(赫兹)按钮,现在读数将马达速率显示为频率测量的结果。
直流母线测量
要实现马达驱动的正常工作,直流母线必需足够可靠。如果母线电压不正确或不稳定,变压器二极管或电容就可能被损坏。直流母线的电压应该大约为相-相输入电压的1.414倍。对于480V的输入来说,直流母线的电压应该接近679VDC。在驱动端子板上,直流母线一般被标以DC+、DC-或B+、B-。按以下步骤测量直流母线。
(1)选择87V的直流电压功能;
(2)将黑色的探头连接至DC-或B-端子;
(3)将红色的探头连接至DC+或B+端子。
母线电压应该和上述例子中提到的电压相一致,并且相对稳定。为了检查母线上交流纹波的总量,将87V多用表的功能切换至交流电压功能。对于一些小型的驱动,只有将驱动拆开,才可测量母线。如果接触不到母线,则可以利用87V多用表的最小/最大峰值功能通过输出电压信号测量直流母线的电压。
(1)将黑色测试线插入到公共插孔,将红色测试线插入到V/Ω插孔;
(2)选择87V多用表的交流电压功能;
(3)将黑色探头连接至其中一个三相输出电压或马达端子,该端将作为参考相;
(4)将红色探头连接至剩下两相的其中一相的输出电压或马达端子;
(5)按下MIN MAX(最小值/最大值)按钮;
(6)按下(最小/最大峰值)按钮;
(7)在最小/最大峰值功能下显示的读数即为直流母线电压值。
准确度和安全
调速马达驱动(ASD)为工业带来了很大的好处,可节省能源、实现更精确地控制、延长马达和设备的使用寿命。使用87V多用表所带的滤波器,技术人员可以精确地测量ASD马达的电压和频率,并确保其工作正常。
除了可以精确地测量ASD外,Fluke 87V多用表还具有新型的温度计功能,满足CAT IV 6000VH和CAT III 1000V环境使用的要求,可以承受高达8kV的电压脉冲,大大降低了浪涌和击穿的危险。
上一篇:AGILENT 34970A在产品参数检定中的应用
下一篇:利用F1508进行绝缘电阻测试
推荐阅读最新更新时间:2024-03-30 22:55
e络盟推出福禄克新型可视红外测温仪VT02及独有技术支持资源
e络盟近日宣布推出Fluke可视红外测温仪VT02,这是一款紧凑直观、具有红外热图的经济型排障相机。Fluke这款卓越创新产品填补了介于点温仪与高分辨率热像仪之间的空白市场,确保为电工及工业、暖通及汽车技师提供如下便利:红外测温仪般便利的对准即拍应用、热像仪般的视觉分析能力以及数码相机般的图像记录功能。 e络盟亚太区产品营销总监Marc Grange表示:“Fluke VT02独力开创了一个全新的具有红外热图的相机类别。我们很高兴能够通过e络盟平台为电工及技师提供这款产品及独有技术支持资源,包括培训视频、应用笔记、讨论群、‘专家咨询’栏目等,均可通过全球工程师最信赖的资源中心e络盟社区获取。”
工程师在开发这款极具开创性,且结构
[测试测量]
卓而不群 创新中国Fluke新品发布会侧记
日前,Fluke公司亚太区副总裁黄宜植借新闻发布会之际,总结了2009年福禄克所取得的业绩。黄宜植表示,“Fluke中国的增长率远远超过全球。”并且其强调,福禄克一直以来都以3年翻一番的速度来成长,因此对于未来,黄宜植充满了信心。 黄宜植的信心,来源于其 “立足中国,服务中国”的企业宗旨。目前福禄克在中国的上海和珠海各拥有一个生产中心;在北京与上海一共拥有三个研发中心。上海的研发团队是福禄克六年前开始筹建的,从几个人发展至今已有40余人。而北京的两个设计团队均为收购得来,“为中国而创新付出了巨大的努力。”黄宜植对这三个团队都给予了高度评价。 黄宜植同时指出,创新是福禄克面对竞争的最大优势,而此次会议的主题正迎
[测试测量]
新型Fluke VT04可视红外测温仪具更高的分辨率
福禄克公司推出了 Fluke® VT04 可视红外测温仪。这款最新的故障排查工具内置数字摄像头和热图覆盖功能,弥补了传统红外测温仪与红外摄像仪的不足。VT04 在极受欢迎的 Fluke VT02 基础上新增了 PyroBlend™ Plus 功能,从而具备比 VT02 高 4 倍的分辨率和自动报警功能。这是一款十分适合在电气、工业维护、HVAC/R 和汽车领域使用的现场故障排查工具。 超紧凑型 Fluke VT04 具有内置智能功能,实现全自动操作,因此操作人员无需培训即可快速检测故障。
“VT02 和 VT04 体型设计紧凑,价格实惠,功能全面,可随身携带,是适合整个团队使用的现场故障排查工具”,Fluke 业务部门经理 Ja
[测试测量]
采用FLUKE 1508绝缘测试仪进行绝缘电阻测试
绝缘电阻测量的基础知识 绝缘电阻测试是测试和检验电气设备的绝缘性能的比较常规的手段,所使适用的设备包括马达、变压器、开关装置、控制装置和其他电气装置中绕组、电缆以及所有的绝缘材料。同时也是高压绝缘试验的预备试验,在进行比较危险和破坏性的实验之前,先进行绝缘电阻的测试,可以提前发现绝缘材料的比较大的绝缘缺陷,并提前采取相应的措施,避免完全破坏被试物的绝缘.最佳的方法由被测设备类型和测试目的所确定。其中带有绕组或电介质材料的被试物或电容的测量中,吸收比和极化指数是判断其绝缘特性非常重要的指标。 吸收比是指对被试物进行测试,利用1分钟时的绝缘电阻值除以15秒时的绝缘电阻值得出的结果;极化指数是10分钟时的绝缘电阻值除以1分钟时的绝缘电阻值
[测试测量]
福禄克发布TiX580和Ti480红外热像仪全面进入640像素时代
福禄克公司(Fluke Corp)推出Fluke® Ti480和TiX580红外热像仪,产品拥有640 x 480分辨率,并可分别通过超像素和精密位移成像技术,实现4倍像素提升至1280 x 960分辨率,生成令人惊叹的超高清红外图像,为工业、过程、科研、公共设施维护和建筑检查领域的专家提供快速发现问题和分析研究所必不可少的保障。拥有卓越性能和功能的同时,全新的TiX580和Ti480更具有难以置信的性价比,宣告640像素时代的到来,是时候升级你的热像仪了! 对于Ti480红外热像仪,福禄克将640 x 480分辨率集成到了坚固耐用的手柄式设计中。该热像仪可实现快速、单手操作,便捷、准确地进行多次检查。现在,终于有了一款可
[测试测量]
福禄克OTDR光纤测试仪
福禄克OTDR光纤测试仪简介: 福禄克OTDR光纤测试仪OptiFiber Pro OTDR是专为企业光纤设施设计的全新型 OTDR。此故障排除及验证工具不但功能强大、效率极高,而且包含有对校园网、数据中心以及存储光纤网络进行故障排除全部所需功能。不但可以节约成本,同时可以提高生产率以及改进网络可靠性。 福禄克OTDR光纤测试仪通过业界的智能手机界面提高了光纤测试的高度,让每一名技师都成为光纤专家。DataCenter OTDR 配置可减少对数据中心光纤进行测试时所发生的不确定性和错误。其超短的死区允许在虚拟数据中心进行光纤跳线测试。这些功能以及业界非常快的扫描时间,使 OptiFiber Pro OTDR 成为您的必备工具。
[测试测量]
福禄克OTDR测试:如何避免”增益器“现象发生
福禄克OTDR测试 使用OTDR从光纤链路的一端测量损耗时,会显示出增益器现象,发生这种现象的原因在于OTDR测量的是光纤内的反射光。OTDR认为光纤的纤芯和包层尺寸等特性在整个长度范围内是一致的,没有差异,并根据检测到的反射光或反向散射光总量计算信号损耗。 术语“增益器”使其看起来好像增加了什么,您可能认为损耗值低于实际损耗值是好事。再仔细想想。增益器最终并未带给您任何东西,除了麻烦和成本增加。 如果损耗测量结果低于实际值,您可能会误以为有足够的裕量可增加其他连接点、延长距离或仅仅是担保性能。但增益器是假性的,如果信以为真,会造成光纤链路最终不能支持相应的应用。 例如,一根150米长的OM4光纤的最大通道损耗为1.
[测试测量]
福禄克携全新现代科技,创全面测试平台
福禄克红外热像事业部正式发布3款年度创新产品:锐智系列红外热像仪;VT04可视红外测温仪及热像仪CNX无线智能套件。与此同时,2013年全国巡回新品发布会也同期进行,以“携全新现代科技,创全面测试平台”为主题,展示如何将最新前沿科技如Wi-Fi、App应用、HDMI、触摸屏等现代技术融入红外热像仪,并传达“精于生活,乐在工作”的全新理念。 锐智系列红外热像仪
一款真正面向未来的产品。此次发布的锐智系列红外热像仪包含3款型号:Ti400/Ti300/Ti200。秉承不断创新理念的福禄克公司首次将现代生活中的各种新技术完美地融入红外热像仪,无论从操作便利性、工作高效性或是产品智能性方面都带给客户前所未有的工作体验。
独有L
[测试测量]
小广播
热门活动
换一批
更多
最新测试测量文章
更多精选电路图
更多热门文章
更多每日新闻
更多往期活动
- EEWORLD大学堂3月精彩视频&课程快报
- 【ST直播】MEMS传感器开发套件简介、了解内嵌“有限状态机和机器学习内核”的传感器
- 下载安森美半导体 KNX 技术文档赢精美礼品!
- 直播已结束|贝能国际新型玻璃破碎检测方案
- 【主题月活动】小电阻,大智慧!
- DEYISUPPORT:【全新FAQ来袭】今夏且听风吟,你不能错过的精华!
- 答题有礼: 寻觅可靠的触控、手势控制解决方案?快来认识新一代AVR DA单片机
- 读故事写评语喽~ 踩过坑的你是否期待更贴心智能的客户支持,KeysightCare邀您抢楼赢礼!
- 用心分享,一起成长!EEWORLD月月有奖优秀主题/回复第28期开始啦~
- 【在线研讨会】ADI RadioVerse™技术与集成DPD算法的RF收发器AD9375
11月13日历史上的今天
厂商技术中心