成为DSO专家:扩展示波器用途的另外十个技巧

发布者:RainbowDreamer最新更新时间:2015-03-24 来源: eefocus关键字:示波器  磁滞图  三相功率测量  带通滤波器  噪声测量 手机看文章 扫描二维码
随时随地手机看文章
先前的文章介绍了扩展中档数字存储示波器(DSO)基本功能的十个技巧,本文将介绍另外十个技巧,它们可以帮助你节省时间,并使你成为公司的DSO专家。你可以点击下面的链接直接查看某个具体技巧。

解调PWM信号
脉宽调制(PWM)被广泛应用于开关电源和电机控制器。分析控制环路的动态情况要求观察脉冲宽度随时间的变化。如果你的示波器具有电源分析选件包,那么你就能直接使用这个功能。如果你的示波器没有这方面的配置,你可以使用示波器的跟踪(某些示波器中的时间跟踪)功能解调出PWM控制信号。

首先,确保你的示波器包含所有实例测量。也就是说,如果你测量波形的宽度,示波器将测量屏幕上出现的波形的每个周期。示波器还应该包含依据测量到的参数产生波形的跟踪功能。宽度或“width@level”参数的跟踪可以显示每个周期脉宽随时间的变化,并且与源轨迹同步。因此宽度跟踪是解调PWM信号的理想工具。跟踪功能可以从参数或数学设置中访问。

图1显示了作为负载电流阶跃变化(轨迹C2,从上数第3个)响应的PWM控制器输出(轨迹C1,顶部轨迹)的跟踪轨迹F1,即展示width@level 参数与时间关系的(底部轨迹)。缩放轨迹Z1(从上数第2个)是水平方向放大了的随负载变化的控制器输出,展示了脉宽的变化。




图1:使用width@level参数跟踪功能,在数学轨迹F1(最底部的轨迹)中显示PWM波形每个周期即时宽度与时间的关系,反应了轨迹C2(从上数第3条)所示的负载电流的阶跃变化。

参数可以像图1中那样应用于跟踪功能,其中参数P2到P4分别从跟踪波形中读取最大、最小、平均和最后一个脉冲宽度。
        
创建用于评估磁性器件的磁滞图

用于电感或变压器等电磁元件的磁滞或B/H曲线是一种常见的电源测量项目。磁性材料可以通过绘制作为磁场强度(H)函数的磁通密度(B)进行表征。这个功能有时在示波器的电源分析选件中提供。这种图也很容易在带X-Y显示器的任何示波器上创建。图2显示了如何连接电感和信号发生器产生B/H曲线。



图2:将电压波形v(t)连接到示波器X-Y显示器的垂直或Y通道。电流波形i(t)连接到水平或X通道。




H是磁场强度,单位为安培/米
B是磁通密度,单位特斯拉
A是横截面积,单位平方米
n是匝数
l是平均路径长度,单位米
v(t)是电感上的电压,单位伏特
i(t)是流过电感的电流,单位安培
需要注意的是,为了确定磁通密度,必须对电压波形求积分。

如果需要的话,你可以使用重定标数学函数对磁场强度和磁通密度进行调整。这要求掌握待测器件的物理特性知识,如上面公式中规定的那样。

图3显示了这种电压与电流经积分后的B/H曲线在示波器屏幕上显示的结果。从待测器件施加的电压用数学轨迹F1进行积分,并在数学轨迹F2中作了重新定标,最终在X-Y显示器的垂直轴上读取单位为特斯拉的磁通密度。电流波形在数学轨迹F3中得到重新定标,并应用于水平轴。


图3:根据电感上的电压和流经电感的电流产生并经过适当调整的磁滞图。      

将波形数据重定标为合适的单位

在前一章节中,我们必须将电压波形的积分转换为磁通密度。这要求将波形除以一个常数(匝数与横截面的乘积)。另外,正确的单位应该是特斯拉。这些操作可以使用示波器的重定标数学函数来完成。重定标允许用户将波形乘上一个常数,然后再增加一个常数,而且可以通过配置用用户选择的单位覆盖原有单位(本例中是伏特)。本例中使用的示波器提供48种标准电气单位,包括特斯拉。[page]

图4显示了数学轨迹F2的重定标设置。我们需要将电压波形的积分除以20×10-6,但因为重定标函数只提供与常数的相乘,因为我们需要使用倒数或50×103。覆盖单位复选框打上勾后会提供一个单位输入域,我们在此输入代表特斯拉的T。这样将波形中的每个点乘以想要的常数就可以实现积分输出(数学轨迹F1)的重定标。F2数学轨迹的垂直坐标现在的读取单位就是特斯拉了。同样,数学轨迹F3用于将测量得到的电流重定标为磁场强度。




图4:利用重定标数学函数将垂直刻度从伏特-秒转换为特斯拉。覆盖单位复选框支持用户自定义的单位。
        
创建带通滤波器

你曾经有过用带通滤波器将目标信号与相邻通道干扰隔离开来的需求吗?大多数中档示波器都包含有增强分辨率(ERES)数学函数形式的低通滤波器,但没有带通滤波器,除非你有数字滤波器选件。你可以使用一些技巧将ERES低通滤波器转换成带通滤波器。图5显示了这一技巧。



图5:你可以对示波器的输入进行带通滤波操作,方法是从输入通道中减去低通滤波后的输入,然后再对结果应用低通滤波器。

左上角的轨迹C1是一种窄脉冲输入信号。设置好的数学函数F1用于对通道1的输入进行低通滤波。在这个案例中,ERES滤波器是16MHz的低通滤波器。轨迹F1(左边中间)显示了滤波器对时域信号的影响。在数学函数F2中,从输入中减去F1中低通滤波器的输出,从而去除低频内容,得到高通响应。F2中的第二次数学操作是另外一个截止频率为58MHz的ERES低通滤波器。结果就是轨迹F2(左下)中的带通响应。

轨迹F3(右上)显示了输入快速傅里叶变换(FFT)的频谱。F4(右中)是低通滤波过后的输入频谱。轨迹F5(右下)是带通滤波操作的频谱。对这些滤波器的控制受ERES函数中滤波器选择的限制。示波器中提供的数字滤波器选件包可以提供更大的灵活性,但这种小技巧在标准配置的示波器中都可以使用。
        
捕捉串行数据图案

示波器一般都有几种工具捕捉串行数据图案。可选的串行触发器和解码功能可以根据规定的串行标准对数据进行操作。另外一种串行图案捕捉技术是使用案例所用示波器中被称为WaveScan的示波器搜索功能。这种数据搜索引擎包含在所有这家供货商的中档示波器中,其它制造商也提供类似的功能。图6显示了使用WaveScan捕捉串行图案的例子。



图6:使用串行图案搜索模式下的WaveScan搜索引擎捕捉18位串行图案。从2位到64位的图案可以用作搜索条件。还需要在“NRZ-to-Digital”卡片下输入位速率、斜率和逻辑电平。

串行图案搜索模式将根据输入的二进制或16进制长度值搜索从2位至64位的图案。除了串行图案外,用户还必须输入串行位速率。这些参数包含在“NRZ-to-Digital”卡片内用于串行图案识别的物理参数设置中,除了数据位速率,还有斜率和数据的逻辑阈值。

当检测到所选的图案时,WaveScan的7个动作中任何一个都可以被触发。图6所示例子已经停止了采集。[page]
        
发现信号异常

全部实例测量是示波器基于采集波形每个周期进行时序测量的能力。如果你测量每个周期,你可以显示跟踪图,用于展示被测参数随时间的变化,而该变化与采集的信号输入是完全同步的。图7包含这一功能的例子。



图7:使用上升时间跟踪参数寻找具有缓慢上升时间的单个波形周期。

采集信号是一个具有781个周期的4MHz正弦波。从上升时间参数(P1)统计数据看,我们可以发现每个周期要做一次测量,因此共有781个值。上升时间的平均值是2.88ns。最小值是接近平均值的2.8ns,但最大值是27ns。打开上升时间跟踪曲线数学轨迹F1,我们可以在轨迹中心附近看到一个峰值。跟踪图显示了随时间变化的每个周期测量值。它在时间上与轨迹C1中所采集的波形是同步的。跟踪到的上升时间最大值是27ns。其位置与具有缓慢上升时间的周期在时间上是同步的。

将缩放轨迹Z1和Z2分别用作C1和F1的缩放图,同时应用多次缩放功能进行水平跟踪,我们可以扩展它们寻找到对应于最大周期值的单个周期。

这是全部实例测量的优势。你可以见到以单个周期为基础的波形时序变化。这种技术可以代替使用WaveScan搜索功能寻找具有缓慢上升时间的这种脉冲。
        
均方根和标准偏差

均方根(rms)和标准偏差(sdev)是密切相关的测量。rms的计算公式是:




其中N是波形中的点数,Vn是第n个采样点的值。
标准偏差被定义为:




其中N是波形中的点数,Vn是第n个采样点的值,mean是V的平均值。
对于零均值的波形来说,上面两个公式是一致的,rms值和标准偏差相等。当信号均值为非零时,从每个数据点减去均值后的sdev值就是减去均值后样本的rms值。因此sdev是真正的交流rms值(在减去均值后的rms值)。
考虑图12所示3.3V电源输出上的纹波和噪声的测量。


图12:使用标准偏差(sdev)测量3.3V电源输出上噪声和纹波的交流rms值。


波形均值用参数P1进行读取。这是与纹波和噪声无关的标称直流输出。rms值P2同时包含了均值、纹波和噪声。标准偏差(参数P3中的sdev)仅读取电源输出中的交流分量(噪声和纹波)。要从每个测量点减去均值。因此标准偏差是“交流”rms值。
rms值现在变高了,因为包含了偏移量。知道均值和rms值后就可以计算sdev值了。




为了计算电源输出上只是噪声和纹波的rms值,你可以选择标准偏差或交流rms。

本文小结

至此你又掌握了另外10个示波器功能的应用,它们可以帮助你扩展这种通用仪器的用途。希望其中一些应用技巧能够帮助到你的日常工作。
关键字:示波器  磁滞图  三相功率测量  带通滤波器  噪声测量 引用地址:成为DSO专家:扩展示波器用途的另外十个技巧

上一篇:利用R&S的电平控制探头产生大动态高准确度信号
下一篇:尝试设计有源滤波器?

推荐阅读最新更新时间:2024-03-30 22:55

ZDS2022示波器中UART协议解码可否适用于RS485/422?
RS485/422 虽然是差分传输,但单条传输线的数据是符合UART协议的,可以当作 UART 协议进行解码。因此,测试时,只需测量RS485/422 差分信号中的其中一路信号,并注意电平正反相的问题,就可以采用 UART 协议解码。 注:RS 485上层的 modbus 协议不支持。 使用UART协议解析测试DEMO板上的RS232信号,解析数据正常。但是,测试从电脑发出来的RS232数据时,有时无法正常解析出数据。这又是为什么呢? UART协议解码时,识别模式是被测信号空闲时是高电平,起始位是一个低电平。而电脑上的RS232收发器发送的数据电平是反相的,也就是说在空闲状态时是保持低电平的,所以导致无法正常解码。此时
[测试测量]
ZDS2022<font color='red'>示波器</font>中UART协议解码可否适用于RS485/422?
汽修示波器测量汽车节气门传感器信号的方法
节气门位置传感器,是汽车电子控制系统中最重要的传感器,主要用于发动机电子燃油喷射系统和电控自动变速器系统。 节气门位置传感器安装在节气门体上节气门轴的一端,探测或监测节气门开度的大小和变化的快慢,并把位置信号转变为电信号后输入电控单元。用于判别发动机的各种工况,从而控制不同的喷油量和点火正时。在装备电子控制自动变速器的汽车上,节气门位置传感器信号是变速器换挡和变矩器锁止时的主要信号。 目前广泛使用的节气门位置传感器有两种类型,线性型节气门位置传感器和霍尔元件型节气门位置传感器。 线性型节气门位置传感器可以告知电子控制模块(ECM)精确的节气门开度。 大多数现代管理系统会应用这种传感器,且它安装在节气门蝴蝶板驱动轴上
[测试测量]
汽修<font color='red'>示波器</font><font color='red'>测量</font>汽车节气门传感器信号的方法
示波器不同取样方式的选择
在测试测量中示波器有许多种取样方法,今天日图课堂将为大家介绍示波器不同取样方式的选择。 默认模式 保留每个采集间隔中的第一个取样点。 峰值检测模式 使用了两个连续捕获间隔中包含的所有取样的最高和最低点。该模式仅可用于实时、非内插的取样,并且在捕获高频率的毛刺方面非常有用。 高分辨率模式 计算每个采集间隔所有取样值的平均值。该模式也只能用于实时、非内插取样。高分辨率模式提供了较高分辨率、较低带宽的波形。 包络模式 在所有采集中查找最高和最低记录点。包络模式对每个单独的采集使用峰值检测。 平均模式 计算用户指定的采集数的每个记录点的平均值。平均模式对每个单独的采集都使用取样模式。使用平均模式可以减少随机噪声
[测试测量]
<font color='red'>示波器</font>不同取样方式的选择
使用示波器测量声速
实验目的 测量声音在空气中的传播速度。 实验仪器 下面是实验用到的器材: 至少拥有两个通道的示波器 两个驻极体话筒 两个 10 kΩ 的电阻 可调电源 我使用了可调电源,并且把电压调节到了 10 伏,但使用 9 伏的电池,或是从 USB 或其他什么地方引出的 5 伏直流电应该也是可以的。 实验原理 要想测量一个物体的运动速度,我们需要两个量:距离和时间,然后套入下面的公式就可以计算出速度: 计算公式 实验步骤 在本实验中我们将两个话筒间隔 0.5 米放置,然后站在两个话筒的一侧(不要站在两个话筒的中间)拍手,示波器触发后,用示波器的光标测量功能计算出话筒接受声音信号的时间差,这个时间差即是声音传播 0.5 米的时间
[测试测量]
使用<font color='red'>示波器</font><font color='red'>测量</font>声速
采样频率和带宽的关系_示波器关键参数---带宽
在日常的实验中,你是否曾经有过类似的疑问: “实验室这么多示波器,这次测400G要选择哪台?” “今天就看个板子上的电源,这台仪器不是最贵的吗?怎么测出来噪声这么大?” “怎么感觉信号有周期抖动?” “需要验证个3.125G的Serdes,用13GHz的还是用59GHz的那台?” 在光通信甚至于各类电子设计的测试中,示波器占据了举足轻重的地位。比如测波形,测昨天我们提到的眼图。示波器通常有两类,一类是实时示波器,有的时候也把它叫做数字存储示波器(DSO),还有一类叫采样示波器。前者的功能主要是用来实时观测信号波形,测量上升下降时间等,而后者主要是用来测眼图相关的指标。在使用上通常采样示波器除了输入待测信号外,还需要给个时钟,而实时
[测试测量]
采样频率和带宽的关系_<font color='red'>示波器</font>关键参数---带宽
泰克示波器SPC校准步骤详解
所有电子测量类仪器使用一定时间段后就需要自检自校准,就像手机一样,如果不定期进行清理内存或者升级,手机就会出现卡机的情况,定期对仪器进行维护与保养,不仅能够延长仪器的使用寿命,还能让你在操作时更得心应手。示波器在工程师日常使用频率中算是比较高的一种电子测量仪器了,那么泰克示波器该如何自检呢? 下面由安泰测试分享泰克示波器自检的步骤: 第一步 :卸下示波器的所有探头、转换器以及信号连接。 第二步:打开示波器,热机一刻钟左右。通常温差会影响示波器自校。 第三步:选择主界面菜单进入Utilities,打开二级菜单。 第四步:进入第三步的二级菜单点击“Instrument Calibration”或者类似名字的按钮。
[测试测量]
泰克<font color='red'>示波器</font>SPC校准步骤详解
普源数字示波器MSO8104的技术参数
产品介绍: MSO8000系列数字示波器是基于RIGOL自主知识产权的ASIC芯片和UltraVisionII技术平台的中高端混合信号数字示波器。MSO8000系列模拟通道带宽高达2 GHz,集7种仪器于一身,具有500 Mpts超大存储深度、良好的波形显示效果、优异的波形捕获率和强大的数据分析功能,并且支持实时眼图测量和抖动分析,为客户提供更优的测试解决方案。 产品特点: 1.MSO8000系列数字示波器为您提供最高2GHz模拟带宽和10 GSa/s采样率。低带宽型号随时可通过软件将带宽升级到2 GHz(单通道和半通道模式),可以确保您以最经济的方式拥有更高的信号保真度和低至100 ps的分辨率(最小时基下可达到2 ps),
[测试测量]
普源数字<font color='red'>示波器</font>MSO8104的技术参数
专访:探秘MSO4000 系列混合信号示波器
  电子工程世界网讯  2007年05月15日  电子工程世界网(以下简称“EEworld”)对泰克公司何燕女士(以下简称“何”)就泰克发布的新品MSO4000混合信号示波器进行了采访。          泰克科技(中国)有限公司亚太区渠道市场经理   以下为专访实录全文:   EEworld: 大家都知道,泰克在5月4日推出了新型混合信号示波器——MSO4000,它的易用性使得它一出现就博得了业界工程师的好评,那么为了让广大的电子工程师更好的了解泰克MSO4000示波器,我们请来了泰克公司亚太区渠道市场经理何燕女士,与我们共同分享一下相关的信息:   1、产品信息   EEworld: 何女士
[测试测量]
热门资源推荐
热门放大器推荐
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved