如何实现AC电流量测应用

发布者:范隆最新更新时间:2015-04-03 来源: eefocus关键字:AC电流量测  缓存器  HY16F198  运算放大器 手机看文章 扫描二维码
随时随地手机看文章
一、内容简介


本文将介绍以HY16F198搭配Hall Sensor(WCS1800)进行交流电流数值量测,最大可量测电流范围从0.1A~17.68A.本文实验数据从0A~17.6A,比较使用电表Agilent 34401A与HY16F198透过交流信号计算出在不同频率45Hz, 50Hz, 60Hz之间所得到的交流电流最大误差率可以控制在3%以内。

二、原理说明

量测原理

透过WCS1800将感应到的交流电流转变为输出电压(Vout),而输出电压(Vout)组成成分是包含(Vac)交流电压讯号和(Vdc)直流电压讯号混和而成的讯号,使用HY16F198量测输出电压(Vout)讯号,并且透过算法分析ADC Count数值,进而换算出相对感测到的交流电流负载。但需注意,透过Hall Sensor(WCS1800)转出每1安培(A)的输出电压最大误差为正负6mV,详细的Hall Sensor特性规格表显示在下一页电器特性表。

Hall Sensor(WCS1800)因为本身的输出电压(Vout)带有Vac交流电压加上Vdc直流电压混和成分,而Vdc的数值为1/2 Vdd,因此,本文应用使用HY16F198设定VDDA电压为3V,并且于ADC缓存器内设定ADC输入参考电压放大倍数为VREF*1/2(VREF= VRPS-VRNS),如把缓存器做为此设定,可以准确的量测到输入电压最大范围1.5V.但是这样的连接,就无法量测到Hall Sensor的Vout输出电压范围,所以需要在外部增加两个分压电阻,在ADC的AIO(0)与VDDA和VSS之间各串10k奥姆电阻做分压,因此量测到的电压数值再透过交流信号计算分析求出感应到的交流电流,并且由LCD Display做电流数值显示。



图1 Hall Sensor

图2 结构框图


控制芯片

单片机简介:HY16F系列32位高性能Flash单片机(HY16F198)



图3 HY16F198


(1)采用最新Andes 32位CPU核心N801处理器。

(2)电压操作范围2.2~3.6V,以及-40℃~85℃工作温度范围。

(3)支持外部20MHz石英震荡器或内部16MHz高精度RC震荡器,拥有多种CPU工作频率切换选择,可让使用者达到最佳省电规划。

(3.1)运行模式350uA@2MHz/2(3.2)待机模式10uA@32KHz/2(3.3)休眠模式2.5uA(4)程序内存64KBytes Flash ROM(5)数据存储器8KBytes SRAM.(6)拥有BOR and WDT功能,可防止CPU死机。[page]

(3.2) 待机模式 10uA@32KHz/2

(3.3) 休眠模式 2.5uA

(4) 程序内存64KBytes Flash ROM

(5)数据存储器8KBytes SRAM。

(6)拥有BOR and WDT功能,可防止CPU死机。

(7)24-bit高精准度ΣΔADC模拟数字转换器(7.1)内置PGA (Programmable Gain Amplifier)最高可达128倍放大。

(7.2)内置温度传感器。

(8)超低输入噪声运算放大器。


(9)16-bit Timer A

(10)16-bit Timer B模块具PWM波形产生功能

(11)16-bit Timer C模块具Capture/Compare功能

(12)硬件串行通讯SPI模块

(13)硬件串行通讯I2C模块

(14)硬件串行通讯UART模块

(15)硬件RTC时钟功能模块

(16)硬件Touch KEY功能模块

三、系统设计

硬件说明

HY16F198搭配Hall Sensor连接电路如下,AIO1与Hall Sensor的Vout接,AIO0透过10k电组分压电路连接在VDDA与VSS之间,这样就可以量测到带有1/2VDDA的交流电压讯号。
 



图4 硬件线路连接图

 

主要组件介绍(1) MCU:HY16F198,功能为量测电信号、控制、运算包含功能为储存校正参数。

(2) LCD Display:负责显示量测出来的电流数值。

(3) 10K奥姆分压电路:主要做为分压电路应用,可以量测到带有1/2VDDA的交流电压讯号。

(4) Hall Sensor :将感应到的交流电流转换为Vac加上Vdc的混合电压输出讯号。

函式使用说明:1. void AC_DataCount(int index, int ADC_Data) :把量测到的ADC Data转换成AC Data. int index :代表所量测到的ADC Data资料笔数。

int ADC_Data :使用HY16F198 ADC所量测到的ADC Data数值。

2. long long AC_Algorithm(void) : AC Data透过交流信号算法计算出电流数值。

一、范例程序

/*——*/ /* MAIN function */ /*——*/ int main(void)

{ long long AC_Value;DisplayInit();ClearLCDframe();Delay(10000);DisplayHYcon();Delay(1000);MCUSTATUSbits._byte = 0;Count=0;InitalADC();SYS_EnableGIE(7,0x1FF); //Enable GIE(Global Interrupt)

while(1)

{ if(MCUSTATUSbits.b_ADCdone) //b_ADCdone=1 execute below { MCUSTATUSbits.b_ADCdone=0;AC_Value = AC_Algorithm(); // To do AC algorithm and to show current value AC_Value=AC_Value/0.5770; // Using 60HZ gain value, calibrate at 2000mA LCD_DATA_DISPLAY(AC_Value); //Display AC Value Count=0;DrvADC_CombFilter(0);DrvADC_ClearIntFlag();DrvADC_EnableInt();DrvADC_CombFilter(1);} return 0;} /*——*/ /* ADC Interrupt Subroutines */ /*——*/ void HW2_ISR(void)

{ int ADCData;if(DrvADC_ReadIntFlag())

{ DrvADC_ClearIntFlag();ADCData=DrvADC_GetConversionData();AC_DataCount(Count++,ADCData); // AC Algorithm : to get ADCData if(Count>=AC_DataLen) //to do 4096 times { DrvADC_DisableInt();MCUSTATUSbits.b_ADCdone=1;} /*——*/ /* ADC Initialization Subroutines */ /*——*/ void InitalADC(void)

{ //Set ADC input pin DrvADC_SetADCInputChannel(ADC_Input_AIO1,ADC_Input_AIO0); //Set the ADC positive/negative input voltage source. DrvADC_InputSwitch(OPEN); //ADC signal input (positive and negative) short(VISHR) control. DrvADC_RefInputShort(OPEN); //Set the ADC reference input (positive and negative) short(VRSHR) control. DrvADC_Gain(ADC_PGA_Disable,ADC_PGA_Disable); //Input signal gain for modulator. DrvADC_DCoffset(0); //DC offset input voltage selection (VREF=REFP-REFN)

DrvADC_RefVoltage(VDDA,VSSA); //Set the ADC reference voltage. DrvADC_FullRefRange(1); //Set the ADC full reference range select. //0: Full reference range input //1: 1/2 reference range input DrvADC_OSR(10); //10 : OSR=32 DrvADC_CombFilter(ENABLE); //Enable OSR DrvADC_ClkEnable(0,1); //Setting ADC CLOCK ADCK=HS_CK/6 Rising edge is high //Set VDDA voltage DrvPMU_VDDA_LDO_Ctrl(E_VDD3V);DrvPMU_BandgapEnable();DrvPMU_REFO_Enable();DrvPMU_AnalogGround(ENABLE); //ADC analog ground source selection. //1 : Enable buffer and use internal source(need to work with ADC)

//Set ADC interrupt DrvADC_EnableInt();DrvADC_ClearIntFlag();DrvADC_Enable();}

关键字:AC电流量测  缓存器  HY16F198  运算放大器 引用地址:如何实现AC电流量测应用

上一篇:汽车座椅调节电机生产线终端噪声测试系统
下一篇:手机电磁兼容测试常见问题及改进建议

推荐阅读最新更新时间:2024-03-30 22:55

三种电路拓扑对运算放大器DC参数测试
1979 年 1 月,《电子测试》发表了一篇文章称,一款单个测试电路可“执行对任何运算放大器全面检查所需的所有标准 DC 测试”(参考资料 1)。单个测试电路在那个时候可能够用,但今天并非如此,因为现代运算放大器具有更全面的规范。因此,单个测试电路不再包揽所有 DC 测试。 现在经常使用三种测试电路拓扑对运算放大器 DC 参数进行工作台及生产测试。这三种拓扑为 (1) 双运算放大器测试环路、(2) 自测试环路(有时称故障求和点测试环路)和 (3) 三运算放大器环路。您可使用这些电路测试 DC 参数,其中包括静态电流 (IQ)、电压失调 (VOS)、电源抑制比 (PSRR)、共模抑制比 (CMRR) 以及 DC 开环增益 (AOL)
[模拟电子]
运算放大器的简易测量
运算放大器是差分输入、单端输出的极高增益放大器,常用于高精度模拟电路,因此必须精确测量其性能。但在开环测量中,其开环增益可能高达107或更高,而拾取、杂散电流或塞贝克(热电偶)效应可能会在放大器输入端产生非常小的电压,这样误差将难以避免。 通过使用伺服环路,可以大大简化测量过程,强制放大器输入调零,使得待测放大器能够测量自身的误差。图1显示了一个运用该原理的多功能电路,它利用一个辅助运放作为积分器,来建立一个具有极高直流开环增益的稳定环路。开关为执行下面所述的各种测试提供了便利。 图1. 基本运算放大器测量电路 图1所示电路能够将大部分测量误差降至最低,支持精确测量大量直流和少量交流参数。附加的“辅助”运算放大器无需具有比待测运
[测试测量]
<font color='red'>运算放大器</font>的简易测量
一个对温度不敏感的高增益运算放大器设计
   0 引言   运算放大器 的用途非常广泛,是许多模拟系统和混合信号系统中的一个完整部分,大量具有不同复杂程度的运算放大器被用来实现各种功能,从直流偏置到高速放大或者滤波等。在很多功率电路中,对运算放大器的温度特性要求很高。例如,应用于功率放大器控制电路中的运算放大器,由于功率放大器是大功率器件,自身消耗的功率大,将导致功率放大器芯片的温度变化很大。因此要求控制电路中运算放大器的增益、稳定性等受温度影响要小。    1 运算放大器的结构选择   运算放大器有很多种结构,按照不同的标准有不同的分类。从电路结构来看,有套筒式共源共栅、折叠式共源共栅、增益提高式和一般的两级运算放大器等。   图1给出3种运算放大器的结构,分
[模拟电子]
用PT1000构成的三线制恒流源驱动电路
工作原理:恒流源驱动电路负责驱动温度传感器Pt1000,将其感知的随温度变化的电阻信号转换成可测量的电压信号。本系统中,所需恒流源要具有输出电流恒定,温度稳定性好,输出电阻很大,输出电流小于0.5mA(Pt1000无自热效应的上限),负载一端接地,输出电流极性可改变等特点。   由于温度对集成运放参数影响不如对晶体管或场效应管参数影响显着,由集成运放构成的恒流源具有稳定性更好、恒流性能更高的优点。尤其在负载一端需要接地的场合,获得了广泛应用。所以采用图2所示的双运放恒流源。其中放大器UA1构成加法器,UA2构成跟随器,UA1、UA2均选用低噪声、低失调、高开环增益双极性运算放大器OP07。   设图中参考电阻Rref
[电源管理]
自举:简单实惠扩展运算放大器工作范围的方式
摘要 当现成的运算放大器(op amp)不能提供特定应用所需的信号摆幅范围时,工程师面临两种选择:使用高压运算放大器或设计分立解决方案——这两种选择的成本可能都很高。对许多应用来说,第三种选择——自举——可能是比较廉价的替代方案。除了动态性能要求极为苛刻的应用,自举电源电路的设计是相当简单的。 建议读者阅读Grayson King和Tim Watkins撰写的优秀技术文章——“通过运算放大器自举产生宽电压摆幅”(EDN杂志,1999年5月13日),其中阐明了自举放大器应用的众多事项。 自举简介 常规运算放大器要求其输入电压在其电源轨范围内。如果输入信号可能超过电源轨,可以通过电阻衰减过大输入,使这些输入降至电源范围
[电源管理]
自举:简单实惠扩展<font color='red'>运算放大器</font>工作范围的方式
Maxim推出带自校准功能的低功耗运算放大器
Maxim推出低功耗、高精度、满摆幅输入/输出运算放大器MAX9613/MAX9615。这两款运算放大器具有独特的自校准功能,能够在任意时间或温度点下校正或消除失调。系统在每次上电时激活自校准电路,从而将温度梯度产生的系统漂移误差降至最低。该功能与手动系统校准相比,可大大节省设计人员的时间和工作量,确保系统达到规定的指标。MAX9613/MAX9615非常适合要求高精度的便携式工业和医疗系统中的传感器接口。 Maxim专有的BiCMOS工艺和正在申请专利的设计架构使这两款器件具有优异的尺寸、精度、带宽和电源电流性能。MAX9613/MAX9615采用1.8V至5.5V电源供电,静态电流仅为220µA (典型值)
[模拟电子]
Maxim推出带自校准功能的低功耗<font color='red'>运算放大器</font>
瑞萨电子推出48V电动车应用成功产品组合解决方案
全球领先的半导体解决方案供应商瑞萨电子集团(TSE:6723)宣布推出一款 48V 电动车应用成功产品组合解决方案,可帮助用户加快电动滑板车、电动自行车、混合动力汽车、UPS 和储能系统的开发。该参考设计在硬件和软件中均采用模块化方法以展示核心及可选功能块,可用于多种 24V-48V 应用,如割草机、手推车、机器人清洁器、电动工具、移动电源等。该成功产品组合使用了 15 个瑞萨 IC 产品,包括三个关键器件:ISL94216 16 芯电池前端(BFE)、强健的 HIP2211 100V MOSFET 驱动器以及用于电机控制的 RX23T 32 位微控制器(MCU)。这一解决方案由 25AHr 锂离子电池供电,驱动 1600W 逆变
[嵌入式]
瑞萨电子推出48V电动车应用成功产品组合解决方案
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved