基于S12的简易数字示波器的设计方案

发布者:Asawen最新更新时间:2015-04-23 来源: elecfans关键字:数字示波器  S12 手机看文章 扫描二维码
随时随地手机看文章
  1.引言

  本文的设计方案中的数字示波器是对传统高速电子束示波器的改进,它能对被测周期信号或单次非周期信号进行一次采集与储存,便于分析波形。

  目前对于数字示波器已经有比较丰富的研究,但有时在开发设计中只需要中低端数字示波器即可达标。针对此本文给出了一种简易数字示波器的制作设计方案,尽可能采用数字电路,结构简单测量结果可靠且具高分辨率和低误差的特点。

  2.系统设计方案

  本设计方案以S12单片机为主控芯片,通过程控放大电路将信号衰减放大后经TLC5510采样送入 FIFO芯片进行缓冲存储和整形电路,然后S12从FIFO读取数据,进行处理后将波形和峰峰值在LCD上进行显示,另一方面从整形电路输入S12测频,并将频率显示在液晶屏上。

  2.1 硬件设计

  硬件设计包括程控放大、高速AD转换与FIFO存储、时钟电路和电源,整形电路与单片机处理四个电路模块,各模块间联系如下:

  数字示波器硬件模块连接图

  2.1.1 程控放大模块

  程控放大的作用是对输入信号进行衰减或放大调整,使输出信号电压在AD转换器输入电压要求范围内。设计采用LM6172运放组成多级运放实现信号的缩放,通过ULN2003驱动电磁继电器,由单片机决定衰减系数。最后加上基线电压(AD转换器输入中点)以调整信号幅度在AD转换器采样范围内,送到AD芯片进行转换和整形电路,分别进行AD转换和将处理信号转化成方波信号以便MCU测频。

  程控放大接口模块

  2.1.2 高速AD转换与FIFO存储模块

  AD转换器将被测信号采样并转换成数字信号存入存储器,决定数字示波器所能测量的最高频率,根据乃奎斯特定理,采样频率至少是被测信号最高频率的2倍才能再现出被测信号。而在数字示波器中采样频率至少应该是被测信号频率的5~8倍才能还原信号的波形。为了满足对高频信号的采集,选用了8位TLC5510AD转换芯片。

  FIFO(先进先出存储器)作为AD转换与单片机之间的高速数据缓冲,具有3个标志引脚FF(满标志)、HF(半满标志)和EF(空标志)。MCU根据这三个标志,当满时读取数据进行处理,并禁止AD采样时钟,半满时继续采样,空时则等待读取数据。由于AD转换较快,可在AD与FIFO间加入74VHC574锁存器数据经锁存缓冲后送入FIFO.

  AD转换与FIFO接口模块

  2.1.3 时钟电路和电源模块

  时钟电路为AD转换器提供采样时钟信号,对于1MHz以内的信号,本设计以20MHz晶振为基准,采用计数器组成的分频电路得到一系列不同的采样周期,分别为20MHz、10MHz、5MHz、1MHz、500KHz、100KHz、 10KHz、1KHz和500Hz共9种,分别对应着不同的水平扫速。由单片机通过数据选择器74F151选择不同的采样时钟用于AD转换采样信号。

  时钟电路设计原理图

  为达到简单方便的目的,本设计各模块均采用±5V电源供电,电源模块是将220V交流电通过变压器后经整流、滤波和稳压转换成±5V直流稳压电,其中程控放大要用到运放,所以要用到±5V双电源,其它模块+5V稳压源能达到要求。

  电源电路设计框图

 

  2.1.4 整形电路与单片机处理模块

  整形电路将经程控缩放后的信号通过运放LM6172构成的比较器变成方波信号,然后送入MCU的计数器以测得信号的频率。

  整形电路示意图

  单片机选用飞思卡尔公司的MC9S12DG128B,具有16路AD转换,是数字示波器的主控器件。

  首先要通过按键控制程控放大衰减系数和确定AD转换器的采样频率,然后用计数器模块测量经整形信号的频率,另一方面通过查看FIFO的标志位来禁止、读取或等待数据,将数据进行处理后通过LCD(选用12864显示屏)显示,包括峰峰值和频率。MCU与个模块之间的控制联系在图1中已给出。[page]

  2.2 软件设计

  软件设计采用飞思卡尔公司的S12系列单片机,并通过PLL将总线时钟超频在64M,能轻松完成信号的采集,处理和显示等功能。

  2.2.1 波形处理模块

  程序开始完成各模块初始化后单片机首先读取FIFO全满信号,若判断全满信号为高电平则开始读取数据,否则继续检测。读取的数据通过处理,则送LCD显示。由于LCD显示命令耗时过长,于是在单片机内存中模拟了一块显示区域,当数据画满整个显示内存,便将整个数据送液晶显示,大大提高了显示效率。

  波形处理模块程序框图

  2.2.2 测频模块

  测频模块程序框图

  测频模块我们使用了S12单片机自带的PAI功能。当脉冲信号输入到相应的引脚时,脉冲累加器每检测到一个有效边沿,则会使相应的脉冲累加计数寄存器PACNn加1.按照一定的时间间隔读取PACNn的值就可以知道单位时间内的脉冲数,进而可以计算出脉冲的周期。

  3.结语

  本文所提出的基于S12的简易便携式数字示波器的设计方案,该方案中设计制作的数字示波器主要是克服了同类研究开发产品的制作和操作复杂,精确度不高的的不足。尽管如此,本设计本着简易便携的目的,旨在制作出简便精确的数字示波器,尽量使用数字电路,集成度高,工作过程受环境影响小,测量数据可视化。

  测试结果表明,在1MHz的测量范围内系统测量频率误差小于0.1%,信号幅值测量误差小于1%.系统精确度较高,能满足一般的研究开发要求,并且能够在LCD上很好的复现被测信号。可作为嵌入式设备,在工业自动化和科研开发测量领域中有着广泛的应用前景。

关键字:数字示波器  S12 引用地址:基于S12的简易数字示波器的设计方案

上一篇:校准示波器的具体步骤
下一篇:基于DSP的双通道数字存储示波器

推荐阅读最新更新时间:2024-03-30 22:56

数字示波器中ADC的选用
自己动手做一个信号发生器和示波器非常重要,不仅可以深刻理解测量仪器的工作原理、关键技术指标,还可以将书本上学过的模拟电路、数字逻辑乃至嵌入式系统全部串起来,从系统层面对各个部分的功能以及构成有更真切的认识,因此这两个项目应该是所有电子工程师都要动手做一遍的基础入门项目。 高速ADC是数字示波器的核心部件,今天关于ADC应用的文章就结合我们摩尔吧/硬禾实战营的一个实际项目 - 100Msps的数字示波器的制作来做一个简单的案例分析,数字和处理部分将在将来的文章中具体分析,今天集中在模拟部分: 数字示波器的构成框图 我们的项目对模拟部分的主要指标要求如下: 单通道、100Msps采样率 模拟带宽20MHz,输入电压的范围 -
[测试测量]
<font color='red'>数字示波器</font>中ADC的选用
基于FPGA的数字示波器设计
随着信息技术的发展,对信号的测量技术要求越来越高,示波器的使用越来越广泛。模拟示波器使用前需要进行校正,使用比较麻烦;而数字示波器,由于受核心控制芯片的影响,对输入信号的频率有严格的限制。基于FPGA的数字示波器,其核心芯片可达到50万门,配合高速外围电路,可以测量频率为1 MHz的信号,有效地克服了以往示波器的不足。   1 系统方案设计   设计的数字示波器系统主要使用了Xilinx系统的开发环境,并在此环境内部建立了AD采样控制模块、键盘控制模块、VGA显示模块等多个模块,从很大程度上减少了硬件电路的搭建,也因此提高了系统的稳定性和可靠性,系统框图如图1所示。      另外,设计使用XPS将32位的MicroBlaze
[模拟电子]
基于FPGA的<font color='red'>数字示波器</font>设计
数字示波器触发方式
经常听到数字示波器的触发方式有电平触发和边沿触发等,但是,到底什么是触发呢?它在示波器中有什么用呢?为了使扫描信号与被测信号同步,我们可以设定一些条件,将被测信号不断地与这些条件相比较,只有当被测信号满足这些条件时才启动扫描,从而使得扫描的频率与被测信号相同或存在整数倍的关系,也就是同步。这种技术我们就称为 触发 ,而这些条件我们称其为 触发条件 。 触发的目的简单来说就是为了每次显示的时候都在波形的同一位置开始,波形可以稳定显示.一般模拟示波器有边沿触发、视频触发和市电触发;而在数字示波器上有了更多的触发条件被称为高级触发如逻辑触发,毛刺触发和脉宽触发等。 ① edge trigger , 边沿触发,可设触发电平,上升沿或下降沿
[测试测量]
泰克数字示波器与模拟示波器的区别
泰克数字示波器,是具有波形触发、存储、显示、测量、波形数据分析处理等独特优点,其使用日益普及。由于数字示波器与模拟示波器之间存在较大的性能差异,如果使用不当,会产生较大的测量误差,从而影响测试任务。下面小编就为大家介绍泰克数字示波器与模拟示波器的区别: 泰克数字示波器,凭借数字技术和软件大大扩展了工作能力,早期产品的取样率低、存在较大死区时间、屏幕刷新率低等不足得到较大改善,以前难以观察的调制信号、通讯眼图、视频信号等复合信号越来越容易观察。 泰克数字示波器可以对数据进行运算和分析,特别适合于捕获复杂动态信号中产生的全部细节和异常现象,因而在科学研究、工业生产中得到了广泛的应用。为了让数字示波
[测试测量]
高校实验室中数字示波器的应用
数字示波器是一种常用的电子测量仪器,在多个行业中都有一定的应用。其中数字示波器高校电子类实验室中不可缺少的实验设备,在测量与分析方面为实验提供的帮助是非常大的。今天小编就来为大家具体介绍一下高校实验室中数字示波器的应用吧,希望可以帮助到大家。 虽然我们已经步入了数字信息时代,但仍然生活在一个连续变化的模拟世界中,高速发展的数字技术并没有阻碍模拟产品前进的脚步。模拟产品积极加入数字处理功能,数字、模拟技术相结合的混合信号器件将成为下一个主要发展方向。 在我们高校的实验室里,数字产品离不开模拟产品的配合,各种新型应用对模拟产品提出了新要求,同时也影响着模拟产品的发展方向。以目前市场热点3G手机为例,其实数字算法问题早已解决,但电源待机
[测试测量]
数字示波器使用及MIPI-DSI信号测量
前言 数字示波器主要用于时域波形测试,测量电压/电流随时间的变化情况,MIPI-DSI是MIPI联盟针对显示设备开发的标准接口协议,这里记录下本人学习数字示波器的使用和MIPI-DSI信号测试的一些总结。 一、示波器的主要指标 数字示波器的工作可以分为以下几个部分,对表笔采集的信号做放大和衰减,ADC对信号进行模数转换,转换后的数据存储在高速缓存中,对信号进行重建和显示。前端的放大衰减电路决定了示波器的带宽,模数转换电路决定了示波器的采样率,而高速缓存则决定了示波器的存储深度,以下对这三个指标分别说明。 1.示波器带宽 信号在电路中传输会受到电容/电感的影响,以放大电路的频域响应说明,随着输入信号频率的增加,放大器的增益在
[测试测量]
<font color='red'>数字示波器</font>使用及MIPI-DSI信号测量
普源DS70000系列数字示波器的性能及特点分析
一、普源示波器DS70000系列产品介绍: DS70000系列数字示波器是RIGOL自主研发的第七代数字示波器,充分发挥了RIGOL自主设计的“凤凰座”示波器专用芯片组卓越性能,实现了国内最高的20GSa/s采样率、4GHz实时带宽。除硬件指标的提升,DS70000系列数字示波器还提供了多种人性化设计,保证了高质量的客户体验。 二、普源示波器DS70000系列产品主要指标: 三、普源示波器DS70000系列产品特点: (1)更高带宽 更高采样 基于RIGOL自主研发的“凤凰座”示波器专用芯片组,实现了国内最高的20GSa/s采样率、4GHz实时带宽,可以更真实的还原信号,覆盖更多的应用。 (2)1M wfms/s的波形刷新
[测试测量]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved