更快地对高速存储故障深入调试三大步骤

发布者:CuriousTraveler最新更新时间:2015-04-27 来源: eefocus关键字:高速存储  逻辑分析仪  示波器 手机看文章 扫描二维码
随时随地手机看文章
  间歇性内存故障处理起来可能会非常复杂。这些故障的根源可能是一种原因或多种不同原因的组合,包括BIOS错误、协议错误、信号完整性问题、硬件问题、内存或其它子系统问题。尽管有些团队能够迅速解决内存调试问题,但更多团队在遇到间歇性故障时会束手无策。本文概括介绍了间歇性内存故障的调试方法,文中通过多个实例,说明了如何才能找出引起内存问题的不同原因。对于经常遇到系统未能引导或内存测试失败的工程师来说,也可从本文介绍的调试方法中受益。

  DDRII激活时的高分辨率定时轨迹

  图1:DDRII激活时的高分辨率定时轨迹。

  各种子系统、不同工作模式和多种循环导致的串扰和资源冲突一直是引起许多间歇性内存故障的根本原因。对于间歇性内存故障,查找其根本原因的方法分成三步:1) 确定故障是否可以重复。试着复制产生故障的条件。重复故障通常可以有效地查看故障的特点。2) 使用普通探头或插槽式分析探头把内存总线连接到逻辑分析仪上,以迅速查看:整个DDRII总线的定时关系、百万分之几概率的误码、协议错误和时钟质量。3) 用高速示波器及高带宽探头,在信号的接收端进行参数测量,包括:对于写入内存的数据在SDRAM上进行探测和对于从内存读出的数据在内存控制器上进行探测。

  评估内存故障要考虑的因素

  在试图重建故障条件时,记住故障的根本原因可能来自未直接连接到内存上的子系统或子应用。局域网接入、子系统上电顺序、进入或退出睡眠模式以及电源周期都是在评估内存故障时需要考虑的重要因素。

  在某个特殊的测试或设置条件下隔离问题,可以使问题变的比较容易。例如,在某项测试过程中发生的故障可能会指向软件程序或信号完整性问题,如串扰或码间干扰。对可重复故障,用户可以在故障条件下进行多次测量。

  重复故障条件说起来容易,但做起来要难得多。需要考虑的细节包括:

  CK0和S0的眼扫描

  图2:CK0和S0的眼扫描(Eye Scan)。

  软件:是否有错误记录?BIOS、操作系统和应用程序是否在测试时运行?

  环境:在系统出现故障时室内温度是多少?在故障期间,被测系统的空气流动情况如何?系统供电是否在技术规范之内?

  硬件:采用同一设计的其他系统是否已经通过验证测试?其它系统也有故障?还是只有这个系统发生这种故障?故障系统的电路板、DIMM、处理器等是什么版本?故障系统与工作系统有什么区别?制造中最新的元器件有什么变化?

  如果条件可以重复,那么在这些条件下进行测试;如果条件不能重复,那么选择最好的内存进行测试,并按顺序改变测试条件(如温度极限和电源极限)。[page]
 

  用逻辑分析工具缩小问题区域

  在调试 DDR系统时,逻辑分析有效地补充了高速示波器的限制。使用DDR探头或插槽分析探头进行逻辑分析,可以迅速查看系统中的问题区域。通过使用逻辑分析工具迅速缩小问题区域,然后使用高性能示波器检查可疑的信号,工程师可以节约大量的时间。

  逻辑分析仪系统提供了下列优势:

  通过简单的连接,对全部 DDR总线进行64K深的高分辨率定时分析。64k深度信号可以从触发前的100%调节到触发后的100%。

  独特的高分辨率眼图,可以识别百万分之几概率的故障信号。

  可以从搜索功能中自动设置全局标尺(最多1024个)。

  着色滤波功能可以识别轨迹的码型,协助观察内存访问情况。

  协议解码转换命令,用于进行功能性验证。

  全局标尺可以跟踪波形和列表窗口。

  对于使用同一时钟的所有信号,使用眼图测量可以一目了然地查看所有信号。

  图1中感兴趣的测量包括:

  时钟周期测量。图1中的系统是DDRII_400,时钟周期是5ns。

  使用标尺测量数据有效窗口,或使用鼠标在轨迹上移动,确定转换宽度的分布情况。

  从有效命令(指令时钟 (CK0)的上升沿,其中CS低,位于WRITE/ READ命令期间)到数据脉冲期间第一个数据选通的上升沿,测得的RAS/CAS等待时间。

  从有效激活(指令时钟的上升沿,S0 = 0,其中命令 = Activate)到有效WRITE/CAS测得的RAS/CAS时延。

  刷新速率。

  预充电间隔。

  着色滤波器使工程师能够迅速识别表明内存访问问题的码型。

  图3:着色滤波器使工程师能够迅速识别表明内存访问问题的码型。

  在图1中,用标尺标出的明显问题区域中,S0 (片选)偶尔会在CK0 (指令时钟)上升沿的250ps范围内启动。

  这可能要超出DDRII 400 建立/保持时间(Ts/Th)》600ps的指标。为正确检验建立时间和保持时间,我们必需使用高速示波器和探头探测SDRAM上的CK0/CK0#和片选。如果Ts/Th对任何信号处于边际状态,那么它可能会导致间歇性的或持续的内存故障。

  在我们连接示波器探头,检定S0的Tsetup /Thold之前,我们可以使用逻辑分析仪上的眼图测量功能,进一步评估边际定时关系。请看图2中所示的眼图:1. CK0是方形波。2. S0是三角形波,构成了与CK0的上升沿有关的眼图。3. S0上升时间慢可能是这个系统中间歇性系统故障的根本原因。边沿慢使得眼图变差,减少了建立时间(Tsetup)。4. 从百万分之几概率的故障信号中识别潜在问题。百万分之几的故障信号会在眼图内部显示为绿色的斑点。在本例中,没有证据表明存在故障信号。边沿慢是主要问题。

  逻辑分析仪上的眼测量功能可以一目了然地了解内存总线信号关系

  图4:逻辑分析仪上的眼测量功能可以一目了然地了解内存总线信号关系。

  图2中的系统要求使用示波器,最终确定片选信号的建立时间(Tsetup)。下面使用逻辑分析仪快速查看内存系统的实例将介绍,增加着色滤波的独特方法如何通过码型识别了解内存访问的概貌,从而迅速发现协议错误。[page]

  在实例中逻辑分析仪上设置了着色滤波器,以帮助定位关闭页面超限,在这种情况下,针对一个存储区(Bank)的READ或WRITE命令没有与激活启动存储区的命令同步。着色滤波器设置成为存储区bank0(B0)提供红色阴影,为存储区bank1(B1)提供蓝色阴影。粉红色=B0激活,红色=B读,青绿色=B激活,浅蓝色=B1读。着色滤波使得工程师能够使用码型标识,同时查看波形,识别要求进一步检测的区域。

  在图3中,B0激活(粉红色)在一系列B0 READ(红色)命令之间前 。但是,屏幕左边B1读(浅蓝色)之前,没有B1激活(青绿色)。如果B1最后激活没有落在允许的规定时间范围内,则表明发生了问题。

  使用逻辑分析仪的最后一个实例,介绍如何使用逻辑分析仪上的眼测量功能。眼图测量工具提供了相对于时钟边沿参考点为0s,从+5ns到-5ns的信号的单一电压门限眼图。

  眼图测量一目了然地提供了:时钟占空比、噪声和信号完整性问题、数据有效窗口和眼图闭合和通道间时滞。

  眼图测量是校准逻辑分析仪取样位置的最快速的方法。在图4中,上面的屏幕显示了采用干净的差分时钟的DDRII系统上的眼定位(Eye Finder)结果。从眼定位(Eye Finder)结果中,我们注意到:1. 从T=0任一侧同等尺寸的白色区域(眼)中可以看出,指令时钟的占空比是50%。

  2. T=0时,指令时钟细长的转换区域 (黄色)表明了干净的时钟边沿。

  下面的屏幕是采用非纯净(有噪声)时钟的DDRI系统。我们通过查看Eye Finder结果,发现时钟是不纯净的:1. 指令时钟的转换区域很宽。2. CK0和CK0#取样的单端眼不对称。不对称的眼也可能表明逻辑分析仪门限不正确。
 

  用高速示波器和探头进行测量

  READ和WRITE选通图取决于探测位置

  图5:READ和WRITE选通图取决于探测位置。

  为确定故障的根本原因,通常要求使用高速示波器和探头进行参数测量。对DDRII测量,使用配有7GHz探头的20Gs/s采样、6GHz带宽的示波器可以为系统特性验证提供精确的测量功能。需要在示波器上测量的参数包括:建立保持时间Ts/Th、上升时间、时钟过冲、频率和抖动分析软件。

  探头位置对在信号特性验证中进行精确的参数测量至关重要。最重要的是:1. 在内存控制器上探测READ数据和选通;2. 在 SDRAM上探测WRITE数据和选通。图5是T=0时相对于DQS5上升沿和下降沿的逻辑分析仪眼扫描(Eye Scan)测量结果。测量结果是在DIMM插槽中使用插槽分析探头获得的。

  在图5中,WRITE选通的眼图很大,形状很好。插槽分析探头上的探头位置与SDRAM足够近,因此信号中没有反射。插槽分析探头上的反射使READ选通劣化。眼图足以对选通偏移和脉宽进行相对测量。但是,总线上的位置不足以实际检定READ业务的特征。

  图5还说明了探头位置的重要性,因为在插槽分析探头上查看时,READ信号的幅度失真,与内存控制器上的实际眼图几乎没有类似之处。为精确地查看内存控制器看到的READ数据,示波器探头必需放在内存控制器上。微型探头前端使这一任务成为可能。许多技术领导者使用本文中介绍的工具和技术,来验证和调试高速内存系统。许多工程师已经采用节约时间的工具,他们可以更快地调试及更好地查看系统性能。

关键字:高速存储  逻辑分析仪  示波器 引用地址:更快地对高速存储故障深入调试三大步骤

上一篇:通过前端将PC声卡变成高速采样示波器设计参考
下一篇:工程师电子制作故事:数字示波器DIY设计

推荐阅读最新更新时间:2024-03-30 22:57

示波器测量装置防孤岛动作断电时间的方法
孤岛现象是指当电网供电因故障事故或停电维修而跳脱时,各个用户端的分布式并网发电系统(如:光伏发电、风力发电、燃料电池发电等)未能即时检测出停电状态而将自身切离市电网络,而形成由分布电站并网发电系统和周围的负载组成的一个自给供电的孤岛。 孤岛发生时由于系统供电状态未知,可能会造成各种不利影响:比如可能危及电网线路维护人员和用户的生命安全;亦或干扰电网的正常合闸;或者电网不能控制孤岛中的电压和频率,从而损坏配电设备和用户设备。 因此,如光伏并网逆变器的电源控制断路器跳闸,就需要示波器来测量装置防孤岛运行断电时间,以检验其是否符合标准。 对示波器而言,这个过程其实就是测量瞬时值的变化。那么今天我们就来讲一讲,如何用示波器来测
[测试测量]
<font color='red'>示波器</font>测量装置防孤岛动作断电时间的方法
ZDS2022示波器百集实操视频之79:信号频率稳定度的测量
大家好,为了达到极致的用户体验,更好地服务于用户,致远电子开通了ZDS示波器用户交流群(微信群),让研发同事来直接面对用户,解答用户疑问!周工(周立功先生)也加入其中,与用户进行亲切互动,其乐融融!群中发生了一些有趣的小故事,本期视频就和大家来分享下第一个小故事。 故事开头 微信群开通第一天,青岛澳邦量器的许工就说,他现在正在用ZDS2022示波器的硬件频率计测量一个信号的频率稳定度,可是没有得到满意的结果,就冒泡提出了疑惑,最后,致远电子研发同事给出最专业的解答。 故事情节 第一个问题当然就是:为什么我用频率计测量不能得出该信号的频率稳定度呢?回答这个问题的关键就是要弄清楚ZDS2022示波器的频率计测量到底是怎么回事?
[测试测量]
ZDS2022<font color='red'>示波器</font>百集实操视频之79:信号频率稳定度的测量
波形轨迹为何有时显示较粗?
有时候,使用ZDS2022示波器与泰克或者安捷伦的示波器同时观测波形,ZDS2022示波器捕捉到的波形水平轨迹看起来相对较粗,如图3.1所示,这是否是ZDS2022示波器本身的噪声引起的呢? 图3.1波形轨迹较粗 答案是否定的。这个波形的水平轨迹看起来比较粗,外部包络着淡淡的一层波形轨迹,是因为信号本身噪声较大,在ZDS2022示波器高达33万次/秒的波形刷新率下,多帧叠加显示的结果。如果波形刷新率低的话,由于叠加的样本不多,看到的波形轨迹相对就会平滑细腻一些,但那并不是波形的真实本质。 通过调大触发释抑,可降低波形刷新率,波形刷新率可以通过自动测量功能中的【触发计数器】测量查看。如图3.2、图3.3所示是调节触发释抑降低
[测试测量]
波形轨迹为何有时显示较粗?
如何用示波器测量稳压管稳压值
  稳压管(也称齐纳二极管)是利用PN结被击穿时的特性来工作的。在一定的反向电压下,稳压二极管被击穿,击穿后它的两端电压基本保持在一个稳定的数值上,此时着改变二极管中的电流大小,将不影响二极管两端的电压,即二极管的反向击穿电压不随反向电流的变化而改变,这就是稳压二极管的稳压特性,测试电路如图。   测试方法:将示波器调到正常工作状态,两通道的输入耦合开关置“DC”,分别调整两个垂直位移(Yl、Y2)旋钮,使两基线重合并与靠下部的某一水平刻度线对齐。两通道的“Y轴衰减”位置应一致。把输入耦合开关置“DC”位置.调节稳压电源的输出电压.观察示波器荧屏上Ul、U2的变化情况,此时随着UI的增加.U2也应相应增加。   继续增加U
[测试测量]
如何用<font color='red'>示波器</font>测量稳压管稳压值
逻辑分析仪的功能
逻辑分析仪的功能 逻辑分析仪是分析数字逻辑关系的一种分析仪器,将被测信号通过比较器进行判定,高于参考电压者为High,低于参考电压者为Low,在High与 Low之间形成数字波形。逻辑分析仪具体的用途是什么呢?下面小编就来具体介绍一下逻辑分析仪的功能,希望可以帮助到大家。 逻辑分析仪的功能 定时分析 定时分析仪是逻辑分析仪中类似示波器的部分,它与示波器显示信息的方式相同,水平轴代表时间,垂直轴代表电压幅度。定时分析仪首先对输入波形的采样,然后使用用户定义的电压阈值,确定信号的高低电平。定时分析仪只能确定波形是高还是低,不存在中间电平。所以定时分析仪就像一台只有 1 位垂直分辨率的数字示波器。但是,定时分析仪并不能用于测试参量,
[测试测量]
<font color='red'>逻辑分析仪</font>的功能
DIY之存储示波器数据的U盘
示波器是用来测量交流电或脉冲电流波的形状的仪器,由电子管放大器、扫描振荡器、阴极射线管等组成。除观测电流的波形外,还可以测定频率、电压强度等。凡可以变为电效应的周期性物理过程都可以用示波器进行观测。 本文教大家制作存储示波器数据 U 盘的方法。 制作存储示波器数据 U 盘步骤 选择 4G 以下容量的 U 盘一个,最好是正品大品牌的,我自己选择的是金士顿 2G 的 U 盘。然后将其插入电脑。如下图所示: 然后我们在电脑下载一个类型转换软件,我选择使用的是傲梅分区软件。类似的软件有很多,直接百度搜索后自己下载安装完毕即可。如下图所示: 当我们打开这个软件的时候,通过红框 2 看到我们 U 盘的类型是 NTF
[测试测量]
DIY之<font color='red'>存储</font><font color='red'>示波器</font>数据的U盘
示波器的使用方法 - 使用示波器测量电源噪声
当今的电子元器件与过去相比,开关切换速度更快,斜率 (slew rate) 更大、每个封装包含的有源针脚数量更多,信号摆动更小。因此,设计者更加关注从手机到服务器等新数字设计中的电源噪声。通常我们使用示波器测量电源噪声。本应用指南举例说明了使用示波器分析电源噪声的各种技术, 并讨论了如何选择和评测电源噪声测量工具。 现在面临的精准测量的问题 随着开关切换速度和信号斜率的升高以及器件上有源针脚数目的增加,电源中产生了更多的开 关切换噪声。 同时,电路也变得越来越容易受到电源噪声的影响。单位间隔的减小意味着时间裕量缩小。信号幅度的降低则导致噪声裕量变小。 面对所有工程设计问题,工程师们必须了解它们产生的原因并获得精确的测量数据,才
[测试测量]
<font color='red'>示波器</font>的使用方法 - 使用<font color='red'>示波器</font>测量电源噪声
泰克加快嵌入式设计师对串行和并行数字信号的调试
全球测试、测量和监测仪器提供商--泰克公司2009年6月24日在京宣布,推出最新MSO3000系列混合信号示波器。新产品系列使嵌入式系统设计人员能够仅在一台仪器上查看和分析模拟信号、数字信号和串行信号。MSO3000系列提供了优异的性能和价格组合,拥有4条模拟通道和16条数字通道、100-500MHz带宽、5M记录长度和2.5GS/s模拟采样率。 MSO3000系列加入业内领先的MSO家族,泰克现在提供从100MHz到1GHz不同性能的MSO3000完整系列,简化和加快复杂的嵌入式系统的调试工作。 在当前市场中,嵌入式系统设计人员正在寻找能够同时监测数字信号、模拟信号和串行数据信号的通用测试解决方案。这种通用性对于
[测试测量]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved