FPGA实现中的SERDES接口设计和测试

发布者:美好梦想最新更新时间:2015-07-28 来源: eefocus关键字:FPGA  SERDES  接口设计 手机看文章 扫描二维码
随时随地手机看文章
近年来,芯片功能的增强和数据吞吐量要求推动了芯片产业从低速率数据并行连接转变到高速串行连接。这个概念被称为SERDES(Serializer-Deserializer),包括在高速差分对上串行地传送数据,而不是用低速的并行总线。一个典型例子是用单个PCI-Express通道取代数据速率达2.112Gbps的传统32位64MHz PCI总线,PCI-Express可达到4Gbps的数据速率,但仅使用了工作在2.5GHz的4条线。简而言之,SERDES协议允许用较少的引脚实现较高的数据速率。

 

图1给出了在一个复杂FPGA实现中的各种可能的SERDES接口。这个例子展示了一个网络处理器位于系统中心的高性能电路板。SERDES应用用紫色标明,可以用FPGA实现的芯片用黄色标明。

 

 

图1:典型的FPGA应用。
图1:典型的FPGA应用。

 

 

SERDES的类型

 

有两种基本类型的SERDES接口:源同步(SS)协议和时钟数据恢复(CDR)协议。这两种类型的主要差别是如何实现时钟控制。源同步接口拥有一个伴随传送数据的时钟信号;CDR没有单独的时钟信号,而是把时钟嵌入在数据中。即CDR接收器将相位锁定在数据信号本身以获取时钟。表1概括了这两种接口的基本差别。

 

 

表1:源同步和时钟数据恢复SERDES接口的比较。
表1:源同步和时钟数据恢复SERDES接口的比较。

 

 

通常CDR协议运行在较高的数据速率和较长的传送距离,因此带来很大的设计挑战。鉴于这个缘故,本文将主要讨论CDR的相关问题。

 

时钟数据恢复的基础

 

顾名思义,CDR接收器必须从数据中恢复嵌入的时钟。更准确地说,是从数据信号的交换中获取时钟。

 

CDR发送器首先串行发送数据,然后将数据转换成8b/10b编码方案。编码处理获得8位数据并将其转换成10位符号。8b/10b编码方式可以在数据线上传送相等数目的0和1,从而减少码间干扰,并提供足够多的数据边沿,以便接收器在收到的数据流上锁定相位。发送器将系统时钟倍频至传送比特率,并以该速率在TX差分对上发送8b/10b数据。

 

CDR接收器的任务首先是在RX差分位流上锁定相位,然后接收器按照恢复的时钟进行数据位对齐,接着用接收器的参考时钟进行字对齐。最后,将数据进行8b/10b解码,供系统使用。

 

在CDR系统中,发送和接收系统通常拥有完全独立的系统时钟。这两个时钟在一个特定的变化范围内非常关键,这个范围大约是数百个PPM。

 

CDR电路与抖动

 

CDR接口的主要设计挑战是抖动,即实际数据传送位置相对于所期望位置的偏移。总抖动(TJ)由确定性抖动和随机抖动组成。大多数抖动是确定的,其分量包括码间干扰、串扰、占空失真和周期抖动(例如来自开关电源的干扰)。而通常随机抖动是半导体发热问题的副产品,且很难预测。

 

传送参考时钟、传送PLL、串化器和高速输出缓冲器都对会传送抖动造成影响。对于给定的比特周期或者数据眼,传送抖动通常用单位间隔的百分比或UI(单位间隔)来说明。例如,.2 UI的传送抖动表示抖动由比特周期的20%组成。对于传送抖动而言,UI数值越低越好,因为它们代表较少的抖动。

 

同样地,CDR接收器将指定在给定比特率时所能容忍的最大抖动量。典型的比特误码率(BET)标准是1e-12。接收抖动仍然用UI来指定。较大的UI表明接收器可以容忍更多的抖动。典型的接收器规格是.8 UI,这意味着80%的比特周期可以是噪声,此时接收器将仍然能够可靠地接收数据。

 

抖动通常用统计钟形分布来量化,该分布在其定点处有理想的边沿位置。

SERDES测试与眼图

 

由于抖动是SERDES系统中的一个主要挑战,因此它也是测试和测量的关键所在。通过把高性能的示波器连接到SERDES信号来测量抖动,并观察“数据眼图”(或眼图)。对于一个给定的差分对,眼图仅仅是由多个状态转换的波形图叠加而成。采样窗应足够宽,能够包含图中的两个交叉点。最终得到的画面就象一个眼睛,它提供了信号质量和抖动的直观形象。通常眼睛张得越开,信号就越好。[page]

 

图2是一个在示波器上显示的典型眼图。图中,用V度量眼睛张开的高度,该值与1.2V的总电压摆幅(从逻辑0到逻辑1)相对。有三个宽度(或者时间)度量值:UI度量整个比特率周期,H度量在共模电压下的张开度,T度量最小跳变电压和最大跳变电压下的宽度。较大的H、T和V值代表眼睛较宽,这说明信号较好、抖动较小。

 

 

图2:一个数据眼图示例。
图2:一个数据眼图示例。

 

 

抖动测量设置

 

为检测传送抖动,用误码率测试器(BERT)产生测试图形,并送入评估板的SERDES接收端口。同样地,将时钟产生器连接到评估板的SERDES时钟。在测试中,FPGA被配置成内部环回这个通道,因此接收到的测试图形通过TX引脚传送。将示波器连接到TX SERDES连接器,这样就可以对传送抖动眼图进行分析。所有的评估板SERDES连接都采用的是50欧姆SMA连接器。整体结构如图3所示。

 

 

图3:抖动测试设备的配置。
图3:抖动测试设备的配置。

 

 

通过在FPGA SERDES接收端口引入抖动,并监控环回SERDES输出的比特误差来测量接收抖动容限。如图3所示,首先将抖动发生器连接到BERT图形产生器。然后BERT产生器将伪随机图形序列(PRBS)发送到评估板的SERDES SMA输入。这种配置允许工程师以一种受控的方式将抖动引入到SERDES RX端口。FPGA被配置成环回,SERDES TX端口连接到BERT的比特误差检测端口。然后工程师就可以引入抖动并观察由FPGA产生的比特误码率(BER)。当BER超出规定时,工程师就知道已经超过抖动容限域值。这个数值应该等于或大于针对FPGA所指定的接收抖动容限。

 

高速背板性能测量

 

通过背板配置驱动FPGA的TX信号,工程师可以测量FPGA的背板SERDES链路传输特性,然后分析背板输出的眼图。首先使用BERT图形产生器把PRBS位流馈送入FPGA评估板的SMA RX端口。通过把FPGA配置成环回,PRBS将出现在评估板的TX端口,并将被驱动至同轴电缆,馈入诸如XAUI Z-Pack HM-Zd的背板。然后背板将位流馈送入连接到示波器的另一长度的同轴电缆。系统要求规定了测试参数,例如PRBS图形选择、背板和FPGA评估板的走线长度、同轴电缆的长度、预加重和均衡设置、工作电压以及VCC。

 

图4展示了采用LatticeSC FPGA的测试设备采样到的9个眼图。每个眼图下的数值是测量到的眼睛高度(图2中的V度量)。注意增加预加重在每个比特率上改善了眼图。预加重是SERDES发送器针对电缆和背板中信号衰减的补偿。LatticeSC要求的眼睛高度是85mV,因此在3.8Gbps下16%的预加重是唯一不满足要求的采样。

 

 

图4:采用LatticeSC FPGA的测试设备采样到的9个眼图。
图4:采用LatticeSC FPGA的测试设备采样到的9个眼图。

 

 

本文小结

 

值得一提的是,SERDES接口为FPGA产品的选择过程增加了一个参数。当选择FPGA时工程师应该考虑可能的信道数目、信道的配置灵活性、接口速度、SERDES IP(即PCS)、传输规范和电气要求。

 

FPGA产品和SERDES接口的速度和市场规模都在增长。通过理解两者功能和挑战,设计团队可以提升产品的可靠性和功能,并加快产品上市时间。

关键字:FPGA  SERDES  接口设计 引用地址:FPGA实现中的SERDES接口设计和测试

上一篇:浮地测量应用指南
下一篇:标准的R负载测量技术

推荐阅读最新更新时间:2024-03-30 23:01

FLIR加速热成像FPGA的开发
中国北京–– 2012 年 9 月 6 日 – MathWorks 于本日宣布,FLIR Systems 通过使用 MATLAB 和 HDL Coder,将热成像 FPGA 开发过程中从概念的形成到构建可在现场测试的原型的时间缩短了 60%。通过使用 MATLAB 来设计、仿真和评估算法,并使用 HDL Coder 在 FPGA 上快速实现最佳算法,FLIR 成功加快了开发进程,仅用数小时便强化原有功能并将代码重新用于原型设计和生产,而不必耗费数周的时间。 借助 MATLAB 和 HDL Coder,FLIR 的算法工程师可以自行生成 FPGA 原型,无需为可能并不完全了解相应算法的硬件工程师提供书面说明文档。这种新的热成像算法
[嵌入式]
FLIR加速热成像<font color='red'>FPGA</font>的开发
基于FPGA的并行扫频DDS的实现
DDS同 DSP ( 数字信号处理 )一样,是一项关键的数字化技术。DDS是直接数字式 频率合成器 (Direct Digital Synthesizer)的英文缩写。与传统的 频率合成 器相比,DDS具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在电信与 电子 仪器 领域,是实现设备全数字化的一个关键技术。DDS在结构上由三部分构成:⑴ 累加器;⑵ 角度幅度 转换器 ,它将数字相位值转换为数字幅度值;⑶ 数模转换器 。 ADI 公司所有DDS的 DAC 都是电流输出形式。DDS频率规划是指在应用范围内提供最佳动态性能的一种尝试,对于许多应用来说,这就意味着在感兴趣的带宽内提供最大的无杂散动态范围,或者称作SFDR.
[嵌入式]
基于<font color='red'>FPGA</font>的并行扫频DDS的实现
星载环境FPGA软件在轨重加载的一种方法
    摘要:FPGA在空间系统中已经广泛应用,为了满足系统可靠性和可扩展性的要求,实现FPGA软件的在轨重加载迫在眉睫。根据FPGA的加载配置原理,以Xilinx公司的Virtex-Ⅱ系列FPGA为实例,介绍了FPGA在轨重加载的硬件电路设计以及软件设计。经过实验室测试验证,该设计方法合理可行,满足星载环境下FPGA软件在轨编程及重加载的设计需求。 关键词:FPGA;在轨重加载;在轨编程;星载环境 0 引言     FPGA已经广泛应用于星载信号处理系统中,然而其在空间环境中的可靠性设计是一个难题。一方面,FPGA软件可能受到外部空间环境影响而产生各种问题,特别是单粒子效应造成的FPGA程序出错,其导致的后果是严重的甚至是灾难性
[嵌入式]
FPGA电源的旁路电容值计算
随着速度更快密度更高的FPGA器件的出现,保持信号完整性就成为高可靠,可重复性设计的关键.合适的电源旁路和退偶设计能够改善整个设计的信号完整性.
[电源管理]
<font color='red'>FPGA</font>电源的旁路电容值计算
16位Σ-Δ A/D转换器AD7705与微控制器的接口设计
  摘要:介绍了16位Σ-ΔA/D转换器AD7705的特点、结构和应用,并举例说明这种串行输入/输出的A/D转换器与微控制器的一般接口方式,指出了微控制器对AD7705片内寄存器编程的关键,并且给出了数据手册中没有的C51接口读写程序。 关键词:Σ-Δ A/D转换器 数字滤波器 增益可编程放大器   AD7705是 AD公司新推出的16位Σ-ΔA/D转换器。器件包括由缓冲器和增益可编程放大器(PGA)组成的前端模拟调节电路,Σ-Δ调制器,可编程数字滤波器等部件。能直接将传感器测量到的多路微小信号进行A/D转换。这种器件还具有高分辨率、宽动态范围、自校准、优良的抗噪声性能以及低电压低功耗等特点,非常适合仪表测量、工业控制等领
[模拟电子]
视频SERDES接口IC可优化远程及遥测应用
  为了满足视频系统、工业和医疗显示和视频传送等应用消除较长连接电缆限制、提高数据速率,以及需要双向传输辅助数据的要求,Intersil公司推出了一款采用双向I2C接口的SERDES IC ISL34340,可以将24位的视频数据和双向I2C数据传送到一条长达10m的高速LVDS电缆,有助于各种应用实现远程配置和遥测功能。   ISL34340是VCMOS并行视频数据串行/解串器,可以在单一高速数据流条件下传送40MHz、6MHz像素时钟频率的24 RGB位和三视频控制位数据。ISL34340采用标准的视频流,可以将3×8(24)RGB位和三视频控制位变成单LVDS对,这样就可以降低连接器和电缆的成本,同时改善EMI/EMC性能。
[嵌入式]
基于EDA软件和FPGA的IP核保护技术
   1 引言   随着电路规模不断扩大,以及竞争带来的上市时间的压力,越来越多的电路设计者开始利用设计良好的、经反复验证的电路功能模块来加快设计进程。这些电路功能模块被称为IP(Intellectual Property)核。IP核由相应领域的专业人员设计,并经反复验证。IP核的拥有者可通过出售IP获取利润。利用IP核,设计者只需做很少设计就可实现所需系统。基于IP核的模块化设计可缩短设计周期,提高设计质量。现场可编程门阵列FPGA具有可编程特性,用户根据特定的应用定制电路结构,因此其处理速度大大超过通用处理器。与ASIC相比,FPGA的缺点是在提供灵活的可编程同时,则以芯片的面积、功耗和速度做为代价。   近年来,单个FP
[嵌入式]
基于EDA软件和<font color='red'>FPGA</font>的IP核保护技术
利用现成FPGA开发板进行ASIC原型开发
2004年12月在一项由Synplicity公司委托的调查中,全世界超过20,000名开发者被询问关于他们的硬件辅助ASIC验证策略。其结果表明今天1/3的ASIC设计者采用FPGA原型进行验证。 即使ASIC设计在尺寸和复杂性上不断增加,现代FPGA的容量和性能的新进展意味着这些设计中的2/3能够使用单个FPGA进行建模。 然而,这些设计中仍然保留有1/3(那就是说,所有ASIC设计中的1/9)要求一个基于多个FPGA的原型开发板。 在不太遥远的过去,对ASIC设计团队而言,在这类情况下主要的解决方案就是在内部建立他们自己的定制多个FPGA的原型开发板。然而,今天,使用现成的多个FPGA原型开发板—
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved