电流测量技术具有极为广泛的应用,许多系统中都需要检测流入、流出电流的大小。例如,电流保护/电流监测设备、4-20mA 电流环系统、可编程电流源、线性/开关模式电源、以及需要掌握流入流出电流比例的充电器或电池电量计量器。由于很多应用是便携式的,因此电流检测电路还必须具有小体积、低功耗的特性。
高端/低端检流电路
低端检流电路的检流电阻串联到地(图1),而高端检流电路的检流电阻是串联到高电压端(图2)。两种方法各有特点:低端检流方式在地线回路中增加了额外的电阻,高端检流方式则要处理较大的共模信号。
图1 所示的低端检流运放以地电平作为参考电平,检流电阻接在正相端。
运放的输入信号中的共模信号范围为:(GNDRSENSE*ILOAD)。尽管低端检流电路比较简单,但有几种故障状态是低端检流电路检测不到的,这会使负载处于危险的情况,利用高端检流电路则可解决这些问题。
高端检流电路直接连到电源端,能够检测到后续回路的任何故障并采取相应的保护措施,特别适合于自动控制应用领域,因为在这些应用电路中通常采用机壳作为参考地。
传统高端检流电路
传统的高端/低端检流方式有多种实现方案,绝大多数基于分立或半分立元件电路。高端检流电路通常需要用一个精密运放和一些精密电阻电容,最常用的高端检流电路采用差分运放做增益放大并将信号电平从高端移位到参考地(图3): VO=IRS*RS;R1=R2=R3=R4 该方案已广泛应用于实际系统中,但该电路存在三个主要缺点:
1)输入电阻相对较低,等于R1;
2)输入端的输入电阻一般有较大的误差值;
3)要求电阻的匹配度要高,以保证可接受的CMRR。任何一个电阻产生1%变化就会使CMRR 降低到46dB;0.1%的变化使CMRR 达到66dB,0.01%的变化使CMRR 达到86dB。高端电流检测需要较高的测量技巧,这促进了高端检流集成电路的发展。而低端电流检测技术似乎并没有相应的进展。
采用集成差分运放实现高端电流检测
采用差分运放进行高端电流检测的电路更便于使用,因为近期推出了许多种集成电路解决方案。集成电路内部包括一个精密运放和匹配度很好的电阻,CMRR 高达105dB 左右。MAX4198/99 就是这样的产品,它的CMRR 为110dB,增益误差优于0.01%,而且采用小体积的8 引脚MMAX 封装。
专用高端检流电路内部包含了完成高端电流检测的所有功能单元,可在高达32V 的共模电压下检测高端电流,并提供与之成比例的、以地电平为参考点的电流输出。需要对电流做精确测量和控制的应用,如电源管理和电池充电控制,都适合采用这种方案。
MAXIM 的高端检流运放中所使用的检流电阻放置在电源的高端和被检测电路的电源输入端之间,检流电阻放在高端不给地线回路增加额外阻抗,这项技术提高了整个电路的性能并简化了布版要求。
MAXIM 推出了一系列双向或单向电流检测IC,有些双向电流检测IC 内置检流电阻,可检测流入或流出被检电路的电流大小并通过一个极性指示引脚显示电流方向。增益可调的电流检测IC、固定增益(+20V/V,+50V/V,或+100V/V)电流检测芯片或包括单双比较器的固定增益电流检测IC,都采用小体积封装,如SOT23,可满足对尺寸要求苛刻的应用。图4 是用MAX4173 构成的高端电流检测电路。
图中输出电压与检流电阻的关系式为:
Vo=RGD*(Iload*Rsense)/RG1)*B 式中B 为镜像电流系数
上式可进一步简化为:
Vo=Gain*Rsense*Iload;Gain= B*RGD/RG1 Gain 分别为:
20(MAX4173T),50(MAX4173F),100(MAX4173H).
通过以上计算公式可看出,CMRR 由内部集成检流电路的工艺决定(典型值>90dB),不再受外部电阻的影响。
采用集成检流电路有以下优点:
1、器件的一致性好
2、极好的温漂特性
3、体积小
4、低功耗
5、使用方便选择检流电阻的注意事项
检流电阻RSENSE 应根据以下几条原则进行选择:
1、电压损耗:检流电阻阻值过大会引起电源电压以IR 的数值降低。为了减少电压损耗,应选用小阻值的检流电阻。
2、精度:较大的检流电阻可以获得更高的小电流的测量精度。这是因为检流电阻上的电压越大,运放的失调电压和输入偏置电流的影响就相对越小。
3、效率和功耗:当电流较大时,RSENSE 上的功耗I2R 就不能忽略。在考虑检流电阻和功耗时,需要注意这一点。如果允许检流电阻发热,则电阻阻值可大一些。
4、电感:如果ISENSE 包含大量高频成分,则检流电阻的电感量要很小。线绕电阻的电感最大,金属膜电阻比较好。
5、成本:如果合适的检流电阻的价格太高,则可采用另一种替代方案(图5)。它采用电路板的印制线作为检流电阻。由于印制板铜线“电阻”并不精确,电路里需要一个电位器调节满量程电流值。另外,铜线的温漂较大(大约为0.4%/℃),在宽温度范围下工作的系统需要考虑这一点。
可调节的线性电流源
可调节线性电流源(图6)是利用高端电流检测器构成的一个典型应用电,IC1 将R1 电流转换成相应比例的电压信号,控制稳压芯片IC2 产生一个稳定的输出电流,D/A 转换器可以提供IOUT 的数字控制。要达到12 BIT 精度(60mA 每LSB)的要求,可使用并行接口的MAX530 或串行接口的MAX531。10 BIT 精度(250mA 每LSB),则可使用并行接口的MAX503 或串行接口的MAX504。
关键字:MAX4172 MAX4173 电流检测
引用地址:MAX4172/MAX4173高端电流检测电路原理及设计
高端/低端检流电路
低端检流电路的检流电阻串联到地(图1),而高端检流电路的检流电阻是串联到高电压端(图2)。两种方法各有特点:低端检流方式在地线回路中增加了额外的电阻,高端检流方式则要处理较大的共模信号。
图1 所示的低端检流运放以地电平作为参考电平,检流电阻接在正相端。
运放的输入信号中的共模信号范围为:(GNDRSENSE*ILOAD)。尽管低端检流电路比较简单,但有几种故障状态是低端检流电路检测不到的,这会使负载处于危险的情况,利用高端检流电路则可解决这些问题。
高端检流电路直接连到电源端,能够检测到后续回路的任何故障并采取相应的保护措施,特别适合于自动控制应用领域,因为在这些应用电路中通常采用机壳作为参考地。
传统高端检流电路
传统的高端/低端检流方式有多种实现方案,绝大多数基于分立或半分立元件电路。高端检流电路通常需要用一个精密运放和一些精密电阻电容,最常用的高端检流电路采用差分运放做增益放大并将信号电平从高端移位到参考地(图3): VO=IRS*RS;R1=R2=R3=R4 该方案已广泛应用于实际系统中,但该电路存在三个主要缺点:
1)输入电阻相对较低,等于R1;
2)输入端的输入电阻一般有较大的误差值;
3)要求电阻的匹配度要高,以保证可接受的CMRR。任何一个电阻产生1%变化就会使CMRR 降低到46dB;0.1%的变化使CMRR 达到66dB,0.01%的变化使CMRR 达到86dB。高端电流检测需要较高的测量技巧,这促进了高端检流集成电路的发展。而低端电流检测技术似乎并没有相应的进展。
采用集成差分运放实现高端电流检测
采用差分运放进行高端电流检测的电路更便于使用,因为近期推出了许多种集成电路解决方案。集成电路内部包括一个精密运放和匹配度很好的电阻,CMRR 高达105dB 左右。MAX4198/99 就是这样的产品,它的CMRR 为110dB,增益误差优于0.01%,而且采用小体积的8 引脚MMAX 封装。
专用高端检流电路内部包含了完成高端电流检测的所有功能单元,可在高达32V 的共模电压下检测高端电流,并提供与之成比例的、以地电平为参考点的电流输出。需要对电流做精确测量和控制的应用,如电源管理和电池充电控制,都适合采用这种方案。
MAXIM 的高端检流运放中所使用的检流电阻放置在电源的高端和被检测电路的电源输入端之间,检流电阻放在高端不给地线回路增加额外阻抗,这项技术提高了整个电路的性能并简化了布版要求。
MAXIM 推出了一系列双向或单向电流检测IC,有些双向电流检测IC 内置检流电阻,可检测流入或流出被检电路的电流大小并通过一个极性指示引脚显示电流方向。增益可调的电流检测IC、固定增益(+20V/V,+50V/V,或+100V/V)电流检测芯片或包括单双比较器的固定增益电流检测IC,都采用小体积封装,如SOT23,可满足对尺寸要求苛刻的应用。图4 是用MAX4173 构成的高端电流检测电路。
图中输出电压与检流电阻的关系式为:
Vo=RGD*(Iload*Rsense)/RG1)*B 式中B 为镜像电流系数
上式可进一步简化为:
Vo=Gain*Rsense*Iload;Gain= B*RGD/RG1 Gain 分别为:
20(MAX4173T),50(MAX4173F),100(MAX4173H).
通过以上计算公式可看出,CMRR 由内部集成检流电路的工艺决定(典型值>90dB),不再受外部电阻的影响。
采用集成检流电路有以下优点:
1、器件的一致性好
2、极好的温漂特性
3、体积小
4、低功耗
5、使用方便选择检流电阻的注意事项
检流电阻RSENSE 应根据以下几条原则进行选择:
1、电压损耗:检流电阻阻值过大会引起电源电压以IR 的数值降低。为了减少电压损耗,应选用小阻值的检流电阻。
2、精度:较大的检流电阻可以获得更高的小电流的测量精度。这是因为检流电阻上的电压越大,运放的失调电压和输入偏置电流的影响就相对越小。
3、效率和功耗:当电流较大时,RSENSE 上的功耗I2R 就不能忽略。在考虑检流电阻和功耗时,需要注意这一点。如果允许检流电阻发热,则电阻阻值可大一些。
4、电感:如果ISENSE 包含大量高频成分,则检流电阻的电感量要很小。线绕电阻的电感最大,金属膜电阻比较好。
5、成本:如果合适的检流电阻的价格太高,则可采用另一种替代方案(图5)。它采用电路板的印制线作为检流电阻。由于印制板铜线“电阻”并不精确,电路里需要一个电位器调节满量程电流值。另外,铜线的温漂较大(大约为0.4%/℃),在宽温度范围下工作的系统需要考虑这一点。
可调节的线性电流源
可调节线性电流源(图6)是利用高端电流检测器构成的一个典型应用电,IC1 将R1 电流转换成相应比例的电压信号,控制稳压芯片IC2 产生一个稳定的输出电流,D/A 转换器可以提供IOUT 的数字控制。要达到12 BIT 精度(60mA 每LSB)的要求,可使用并行接口的MAX530 或串行接口的MAX531。10 BIT 精度(250mA 每LSB),则可使用并行接口的MAX503 或串行接口的MAX504。
上一篇:电源模块极限测试方法
下一篇:铂电阻的温度测量系统设计
推荐阅读最新更新时间:2024-03-30 23:02
开关电源中电流检测电路的探讨
1引言 功率开关电路的电路拓扑分为电流模式控制和电压模式控制。电流模式控制具有动态反应快、补偿电路简化、增益带宽大、输出电感小、易于均流等优点,因而取得越来越广泛的应用。而在电流模式的控制电路中,需要准确、高效地测量电流值,故电流检测电路的实现就成为一个重要的问题。 本文介绍了电流检测电路的实现方法,并探讨在电流检测中常遇见的电流互感器饱和、副边电流下垂的问题,最后用实验结果分析了升压电路中电流检测方法。 2电流检测电路的实现 在电流环的控制电路中,电流放大器通常选择较大的增益,其好处是可以选择一个较小的电阻来获得足够的检测电压,而检测电阻小损耗也小。 电流检测电路的实现方法主要有两类:电阻检测(resisti
[测试测量]
浅谈电流检测在汽车电子系统中的实现过程
这里主要介绍电流的检测方法,发现设计中容易被忽略的一些因素。首先考虑两种不同的方法:基于分流器的检测方法和基于磁场的检测方法。
1.分流器的方法高精度低阻值电阻器目前具有大功率和小体积的特点,这种方法成本较低,精度较高。在汽车电子中用的较多。
2.基于磁场的检测方法(以电流互感器和霍尔传感器为代表)有很多有点,如良好的隔离和较低的功率损耗,这使得它在电源驱动技术和大电流领域应用较多,但它同样也有不足,比如体积较大,补偿特性、线性以及温度特性不理想等。
想要实现防夹的功能,通常是同时使用两种方法进行检测的,下面以车窗控制为例进行介绍,。
面对的车身电子控制系统的工作电流,一般都在在1-100A之间,但是需要我们注意的
[嵌入式]
利用PMBus数字电源系统管理器进行电流检测——第二部分
Current Sensing with PMBus Digital Power System Managers—Part 2 利用PMBus数字电源系统管理器进行电流检测——第二部分 摘要 本文第二部分介绍如何测量高压或负供电轨上的电流,以及如何为IMON检测方法设置配置寄存器。本文阐述了测量电流的精度考虑因素,并提供了使用LTpowerPlay®进行器件编程的相关说明。在第一部分,我们介绍了电流检测的基本概念,包括各种方法和电路拓扑。 超出器件限制 LTC297x器件对施加于VSENSE和ISENSE引脚的电压存在限制。电压最高不得超过6 V。接下来,我们主要讨论LTC297x系列中的大部分产品,LT
[电源管理]
TI推出集成高精度、低漂移分流电阻器的电流检测放大器
可用于测试与测量、通信负载监控以及供电电源等应用中 并减少校准工作、降低系统成本并缩减占位面积 日前,德州仪器(TI)宣布推出业界首款可集成高精密度、低漂移分流电阻器的电流检测放大器- INA250,该器件可在宽泛的温度范围内提供高度准确的测量。INA250将分流电阻器与双向、零漂移电流检测放大器完美的集成在一起,从而可支持低侧和高侧实施方案。在许多系统中,设计人员凭借其准确度和低漂移的性能可减少甚至取消校准工作。与同类竞争产品的解决方案相比,这种集成还能实现更低的系统成本和更小的电路板占位面积。如需了解有关INA250电流检测放大器的更多信息并获得样片,敬请访问: www.ti.com.cn/ina250-pr-cn
[模拟电子]
基于数字电源控制器UCD3138的一种新的输入电流检测方法(一)
1 引言 1.1 数字电源控制器UCD3138 的应用 数字电源控制器UCD3138 因其自身所具备的良好的前馈功能,通信功能和可编程性等特点,在DC/DC 电源中通常置于副边侧。常见的拓扑方案包括全桥,半桥和LLC 等。图1 所示的是应用数字电源(控制器)UCD3138 的硬开关全桥系统框图。UCD3138 位于副边侧,通过数字隔离器ISO7420CF完成驱动信号向原边侧的传递。 Figure 1. 硬开关全桥系统框图 1.2 隔离电源拓扑中的电流互感器 图2 所示的是应用于全桥等拓扑中的电流互感器。其原边侧串入主功率回路,副边侧将按比例(比例系数为互感器的匝比T)衰减后的电流信息通过与采样电阻相乘得电压信息。位于副边
[电源管理]
具有过压保护功能的高端电流检测电路设计
电路功能与优势 发生瞬变后,或者连接、断开或关断监控电路时,高端电流监控器可能遇到过压情况。图1所示电路使用具有过压保护功能、作为差动放大器连接的 ADA4096-2运算放大器来监控高端电流。 ADA4096-2具有输入过压保护功能,对于高于32 V及低于供电轨的电压,不会发生反相或闩锁。 图1. 具有输入过压保护的高端电流检测(原理示意图:未显示所有连接和去耦) 该电路采用可调低压差500 mA线性稳压器 ADP3336供电,如果需要,后者还可用于为系统其他器件供电。设置为5 V输出时,输入电压范围为5.2 V至12 V。为了省电,可通过将 ADP3336 SD 引脚置位低电平来关断电流检测电路,而电源(例如太阳能电池板
[测试测量]
高压侧电流检测放大器LT6107
0 引言 LT6107是凌力尔特公司(Linear Technology Corporation)推出的一款简单小巧、多功能高压侧电流检测放大器,是一种简单易用的通用器件,具有高输入电压范围、高精度、宽工作温度范围、低失调电压、低电源电流等特性,是MP级器件,能够应用到自动装置、工业设施及电源管理等产品中,可满足汽车、军事和工业以及其他严酷环境中的应用需求。 LT6107的最大输入偏置电流仅为40nA,失调电压仅有250μV,其增益可由两只外部电阻调节设置,精度高于1%,输入电压范围为2.7V~44V,能适应-55℃~+150℃的工作环境,工作电流仅为65μA。 LT6107具有很低的检测电压。当VSENS
[工业控制]
德州仪器推出针对滤波电流检测的双级电流检测监控器
该产品简化了汽车、马达控制与电源管理应用的电流测量设计 2007 年 5 月 8 日,北京讯 日前,德州仪器 (TI) 宣布推出两款电压输出、高侧电流检测监控器 —— INA270 与 INA271,其具有 -16V 至 +80V 的宽泛共模输入范围。这两款产品还采用二级架构,能够简化需要额外电流信号滤波的电路设计工作。上述器件特别适合汽车、电机控制、电源管理以及电池充电等领域的电流测量应用。(更多详情,敬请访问: http://focus.ti.com.cn/cn/docs/prod/folders/print/ina270.html )。 INA270 与 INA271 不仅能够解决高共模电压下小分路压降 (shunt
[新品]