天线参量测量

发布者:绿意盎然最新更新时间:2016-07-25 来源: mwrf关键字:天线  参量测量 手机看文章 扫描二维码
随时随地手机看文章
天线参量是描述天线特征的量,可用实验的方法测定。天线参量的测量(简称为天线测量)是设计天线和调整天线的重要手段。因为天线的特征是多方面的,所以一个天线有很多个参量(见天线特性参量、天线方向性、天线阻抗)。在这些参量中,大多数情况下要着重测量的是方向图、输入阻抗和增益。

  天线方向图的测量  图1是测量通过天线相位中心各平面内的方向图的方案之一。图中天线1为被测天线,与信号发生器相连用作发射,它装在旋转平台上能作360°转动;天线2为辅助天线,它与电场强度计相连以便测得离被测天线一定距离处的场强。两天线的极化特性要求相同,为了近似满足远场条件,两天线间的距离应满足天线参量测量,式中λ为测试工作波长;r和D的意义见图1。当转动被测天线1时,可在天线2处测得以转动角θ表示的函数的电场强度E(θ),于是就可画出转动平面内的天线 1的方向图。若被测天线为半波天线,它的子午面内的方向图如图2a,当把天线转动90°使之垂直于转动平面时,可测得赤道面内的方向图(图2b)。若把天线任意倾斜安装,则可测得任意面内的方向图。此外,也可固定被测天线1,而把辅助天线2沿以被测天线为中心,距离r为半径的圆周运动,同样可以测得天线的方向图。若把收发条件互换,即把被测天线用作接收,辅助天线用作发射,最终测得的天线方向图并无变化,这是符合天线互易定理的。

 

天线参量测量

 

天线参量测量

 

  天线输入阻抗的测量  天线输入阻抗是从天线的输入端向天线看去的阻抗,从原则上说,所有测量阻抗的方法都可以用来测量天线的输入阻抗。但实际上,常用的方法是电桥法和测量线法。前者常用于短波以下,后者常用于超短波以上的天线。
  天线输入阻抗的电桥法测量如图3。图中的信号发生器产生所需频率的电压,把它加到电桥的一个对角线上,在另一对角线上接高频微伏电压表作平衡指示器。电桥由四个阻抗构成,其中Z1和Z2为固定阻抗,Z3为可变阻抗,Zx为被测天线的输入阻抗,即把天线的输入端作为电桥的一个臂。调节可变阻抗使平衡指示器的读数为零,表示电桥已达到平衡,根据电桥平衡条件就可计算出

 

天线参量测量

 

天线参量测量

  可以按照图4用测量线法测量天线的输入阻抗。图中的测量线是一段(长度应大于半波长)带有可移动场强指示器的传输线,测量线的一端连接信号发生器,发生器调到所需的频率,测量线的另一端连接被测天线。通过测量沿测量线上的电压(电场)分布(图4),就可以用下式算出被测天线的输入阻抗Zx

天线参量测量

式中ZC为测量线的特性阻抗;K为行波系统,天线参量测量                  天线参量测量,λ为工作波长;z0为第一个电压波节至被测阻抗连接点的距离。

 

天线参量测量

 

  用测量线法测阻抗时,根据测得的数据计算待测阻抗值是一件费时的工作,尤其由于天线的输入阻抗是随工作频率而变化的,所以当需要在众多的频率点上测量天线的输入阻抗时,工作量将大为增加。但若用圆图来计算待测阻抗或用自动扫频阻抗测量仪,则可大大减少测量天线输入阻抗的工作量。
  天线增益系数的测量  天线增益系数的测量常用绝对法和比较法。可按图5用绝对法测天线的增益系数。首先用功率计和场强计分别测出待测天线的输入功率和足够远距离 r处的电场强度,然后用下式求得该天线的增益系数:

 

天线参量测量


       天线参量测量

 

天线参量测量

式中E为距离r处最大辐射方向的电场强度;P为输入功率。
  可按图6用比较法测天线的增益系数。信号发生器的输出经匹配器先接到被测天线,此时场强计在距离r处测得电场强度为E1;然后用已知增益为G′倍的标准天线替换被测天线,并重新调整匹配,由场强计测得电场强度为E2。再用下式即可算出被测天线的增益系数G:

天线参量测量

   或

天线参量测量

 

天线参量测量

 

  模拟测量  在实验室内进行天线参量的测量时要求被测天线有一个“合适”的尺寸。实用天线的尺寸大小悬殊,大的达几百米以上,而小的只有几个毫米。为便于测量,可在适当频率上测量缩小或放大了的模型。此时需要先设计好模型天线,使它的参量和实际天线的相同。这就是天线的模拟测量。
  在自由空间条件下,制作线度因子为Kd的模型天线(即模型天线的尺寸等于实际天线的尺寸除以Kd),在测量时应满足下列条件:工作频率f2=Kd·f1,模型天线的电导率σ2=Kd·σ1,此处f1和σ1表示实际天线的工作频率和电导率。
  在实际天线的模拟测量中,往往只能满足上述第一个条件,而满足不了第二个条件,但这对于大多数高效率的天线,不会引入太大的误差。
  近场测量  对于射电天文、雷达设备等应用的大口径天线,测量时很难满足所需的最小距离。如天线口径 100米,工作波长10厘米,测试距离天线参量测量,这样大的测试场地事实上是无法办到的。还由于地球表面曲率的影响,为使电磁波不为球形地球表面所遮挡,收发天线的高度也将达到不现实的程度。对这样的大天线,其参量的测量通常有两种方法,即利用射电星的测量技术和近场测量技术。
  射电星测量技术就是利用辐射稳定的射电星作为发射源,被测天线用于接收。这样就可保证收发间距离远大于最小测试距离。
  近场测量技术是在天线附近(距天线表面仅几个焦距的距离范围内)测量远区的天线参量。近场测量技术包括缩距法、聚焦法和外推解析法。
  ① 缩距法:利用特定的信号发射天线,使收发天线之间的距离减少后,仍能保证发射天线在接收天线口径处产生如同远距离时一样的平面波。一般的发射天线在其附近产生的是球面波。为把球面波校正为平面波,可用附加的透镜或抛物面反射器等。
  ② 聚焦法:调整被测天线,使如抛物面反射器天线、透镜天线、相控阵天线等有聚焦特性的天线,原来对无穷远处的聚焦改变为聚焦于近场区(几个焦距或几十个波长的距离内),然后在焦区测取其方向图。使天线聚焦于近场区的方法是:对抛物面反射器天线可把馈源从焦点沿轴外移一小段距离;对透镜天线可把馈源安装在一个焦距到两个焦距的范围内;对相控阵天线则可通过适当调整其移相器而达到。
  ③ 外推解析法:先测得天线口径上的场分布或天线导体表面上的电流分布,然后用解析的方法算出远区场分布,即天线的远区方向图。
  微波暗室  在普通实验室内进行天线参量的测量时,周围环境使电磁波产生反射、散射和绕射等现象,这些反射、散射和绕射场对测量场的“干扰”导致测量精度的下降,这对方向图的零值深度和副瓣等微弱场的测量,影响尤为严重。建立微波暗室可以解决这个问题。微波暗室就是周围安装微波吸收材料的实验室。暗室不但用于天线测量,还可用于目标散射场和绕射场等弱场强的测量。使用暗室除能减弱干扰场因而提高测量精度外,还能保证有一个保密的、全天候的测量环境。从1953年建立第一个微波暗室以来,暗室的技术指标已有很大的改进。
  起初,暗室采用平板型吸收材料,这种材料的吸收频带较窄。现代宽带微波暗室大多使用锥形或楔形吸收材料。一个设计良好的微波暗室,在测量区内的干扰场可以做到-40分贝以下。

关键字:天线  参量测量 引用地址:天线参量测量

上一篇:利用电波暗室测量RF噪声抑制能力
下一篇:双通道相关干涉测向技术

推荐阅读最新更新时间:2024-03-30 23:19

天线的长度计算方法
在做射频等发射接收的时候,天线的选择和长度对信号的接收灵敏度有很大的影响哦,下面就天线的计算简单概述一下:     一段金属导线中的交变电流能够向空间发射交替变化的感应电场和感应磁场,这就是无线电信号的发射。相反,空间中交变的电磁场在遇到金属导线时又可以感应出交变的电流,这对应了无线信号的接收。      在电台进行发射和接收时都希望导线中的交变电流能够有效的转换成为空间中的电磁波,或空间中的电磁波能够最有效的转换成导线中的交变电流。这就对用于发射和接收的导线有获取最佳转换效率的要求,满足这样要求的用与发射和接收无线电磁波信号的导线称为天线。     理论和实践证明,当天线的长度为无线电信号波长的1/4时,天线的发射和接
[模拟电子]
卫星电视中卫星天线及馈源的对焦
卫星天线系统作为卫星电视的窗口,在有线电视系统中占有非常重要的地位,卫星天线的优劣及其馈源的对焦状况对卫星节目质量起着至关重要的作用。   见于实际中天馈系统存在的一些问题,本文想就卫星天线及其馈源的对焦谈一点自己的看法和建议。实际中,卫星天线普遍采用旋转抛物面天线,旋转抛物面天线具有两个非常重要的特性:   (1)由焦点发出的电磁波经抛物面反射后,传播方向与轴线平行;反之,平行于轴线的电磁波经抛物面反射后会聚于焦点。   (2)由焦点发出的电磁波经抛物面反射后,到达抛物面天线口径平面及其任一平行面时,所有射线行程相等,即焦点发出的球面波经抛物面反射后转换为平面波,反之亦然。?位于地球上空约3600km的同步卫星转发到地面某一点
[模拟电子]
三频带手机天线设计方案
随着无线系统内置功能的不断增多,对小体积、低成本印刷电路天线的需求在增加,比如一款必须要支持蓝牙、蜂窝操作、全球定位系统(GPS)等功能的手机。对一台设备内包含的多个蜂窝通信频带来说,有几种不同类型的天线可用。由于陶瓷基板材料的高介电常数,为减小天线所占空间,天线一般被制造在陶瓷基板材料上。本文提出了一种印制在罗杰斯公司的一种典型层压材料RO4350B上的低成本天线。对研制中的便携式场强仪的射频和数字电子部分来说,做在RO4350B材料上天线的大小和所占空间,与做在陶瓷基板上的天线一样。 为支持对蜂窝基站实施的测量,本文采用罗杰斯公司(Rogers)的双层RO4350B层压板材制作了一款印刷电路板偶极子天线。这款紧凑的天线覆盖9
[模拟电子]
三频带手机<font color='red'>天线</font>设计方案
安弗施(RFS)测试实验室荣获CNAS资格认证
上海,2016年3月31日 日前,全球无线通信与广播基础设施专家安弗施无线射频系统(上海)有限公司(RFS)测试实验室获得由中国合格评定国家认可委员会认证的实验室认可决定书。此举标志着RFS在无源天线领域的产品质量再次赢得行业权威认可。 本次RFS测试实验室认证检测对象为无源天线,检测能力范围包括耐温性、耐腐蚀及耐破坏等19个项目。通过认证的无源天线19项测试包括低温试验、高温试验、温度变化、恒定湿热、交变湿热、盐雾、水试验、正弦振动、碰撞、增益、半功率波束宽度、前后比、交叉极化比、电下倾角、上部第一旁瓣抑制、下部第一零点填充、电压驻波比、隔离度、交调。 通过此次权威认证,RFS测试实验室今后可按照《认可标识使用和认可状
[网络通信]
华为完成新一代绿色5G天线验证:功耗不变 速率提高40%
近日,中国移动四川公司携手华为率先完成新一代绿色Massive MIMO 产品解决方案预商用验证,该方案通过突破式软硬件创新,实现了绿色节能、覆盖以及体验的阶跃式提升。   测试结果表明, 相比传统天线单元,在不增加发射功率的情况下,新一代绿色Massive MIMO实现上下行覆盖提升2dB,客户上下行边缘速率提升30-40%。   据介绍,该设备在硬件和软件方面都有提升:   硬件方面,应用新材料和新技术,通过使用新型超轻、超大规模天线阵子和直通馈电网络,减少信号传输损耗,降低设备能耗,提高基站覆盖能力。   软件方面,应用新算法,创新自适应高分辨率波束赋形算法,实现了窄波束宽幅扫描、自适应波束寻优、高分辨波束域降噪,提升
[手机便携]
基于RFID的标签天线设计
现代社会产品越来越丰富,数据管理需求也越来越高,人们需要将多种多样处于生产、销售、流通过程中的物品进行标识、管理和定位。采用传统的条形码进行物品标识将会带来一系列的不便:无法进行较远距离的识别,需要人工干预、许多物品无法标识等等。相反,由于射频识别fRFID1系统采用具有穿透性的电磁波进行识别,所以可以进行较远距离的识别,无须人工干预,可以标识多种多样的物品。   射频识别技术是一种非接触的自动识别技术。它是由电子标签(Tag/Transponder)、读写器(Reader/Interrogator)及中间件(Middle-Ware)~部分组成的一种短距离无线通信系统。射频识别中的标签是射频识别标签芯片和标签天线的结合体。标签根
[模拟电子]
全面解析车载移动电视双天线分集接收技术
  随着DVB-T在手机电视、车载电视、楼宇电视、地铁电视等户外广播领域内的发展,在这些接收范围内,多径衰落、多普勒频移等小范围衰落是不可避免的问题,解决这些衰落和干扰成为倍受关注的问题。   为了解决衰落,改善数字电视广播移动接收的信号质量,在接收设备上使用了多种措施,如信道解码纠错技术、抗衰落接收技术等,但双/多天线分集接收技术是最明显有效的解决方案。   一 多径信号衰落和多普勒效应   什么是衰落,简单的说信号电平因受各种因素影响而随时间变化叫衰落,衰落分为慢衰落和快衰落。衰落产生的原因很多,无线地面传输信号很容易受到因高楼大厦、山地丘陵地形等障碍物云雨等天气的影响,这些影响都会产生衰落。在DVB-T移动接收中常见的两种衰
[嵌入式]
IC设计中天线效应以及其抑制方案探讨
  如同摩尔定律所述,数十年来,晶片的密度和速度正呈指数级成长。众所周知,这种高速成长的趋势总有一天会结束,只是不知道当这一刻来临时,晶片的密度和性能到底能达到何种程度。随着技术的发展,晶片密度不断增加,而闸级氧化层宽度不断减少,超大规模积体电路(VLSI)中常见的多种效应变得原来越重要且难以控制,天线效应便是其中之一。在过去的二十年中,半导体技术得以迅速发展,催生出更小规格、更高封装密度、更高速电路、更低功耗的产品。本文将讨论天线效应以及减少天线效应的解决方案。   天线效应   天线效应或电浆导致闸氧损害是指在MOS晶片制程中,可能发生潜在影响产品良率与可靠性的效应。目前,微影制程采用‘电浆蚀刻’法(或‘干式蚀刻’)制造晶
[电源管理]
IC设计中<font color='red'>天线</font>效应以及其抑制方案探讨
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
热门活动
换一批
更多
最新测试测量文章
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved