电压表是一种测量两点间电势差的仪表,以伏特为单位。
如何选择电压表
许多种仪器可以测量电压,包括数字多用表(DMM),静电计和纳伏表。要想成功测量电压,需要电压表的输入阻抗远远大于被测器件(DUT)的内部阻抗(源阻抗)。如果不是这样,电压表测量的电压会比接入表以前的电压更小。静电计有很高的输入阻抗(典型在100TΩ量级〔10014Ω〕,所以他们被用来测量高电阻的电压,DMM和纳伏表可以测量10MΩ或低源电阻的电压。纳伏电压表更适合测量低内阻的源的小电压(毫伏或微伏)。
低电压测量
当测量较高电压时可以忽略的偏置电压和噪声源,在低电压测量时会带来很明显的误差。固定的偏压通常可以通过输入端短路,然后用仪器的回零(相对)功能来使其为零。下面几段中讨论会影响到低电压测量的不稳定的误差源以及如何使他们对测量的影响最小。
热电动势
在低电压测量中最常见的误差源是热电动势(热电EMFs),这是由导体的节点间温度的差异造成的(如图1)。
构造电路时导体都使用同种材料可以使生成的热电动势最小。例如,由铜的接线片或接线柱形成铜-铜接触的结,这样会产生最小的热电动势。而且,结点必须清洁,未被氧化。
在电路中使温度梯度降至最低也可减少热电动势。一个减小温度梯度的方法是将所有接点放在很接近的地方并保证与一个公共的大热沉有好的热耦合。如果这样难以实现,就热耦合每一对相应的不同材料的接点使它们的温差最小,这也有助于减小热电动势。
Johnson 噪声
电压表能测量的电压的极限的限制是由 Johnson(热)噪声决定的。这种噪声是与电子热运动产生的相关电压。所有的电压源都有内阻,这就会产生Johnson噪声。某一电阻产生的噪声电压大小由下面的公式计算出:V= √4kTBR
k= Boltzmann,s 常数(1.38×10-23J/K)
T=源的绝对温度K
B=噪声带宽 Hz
R=源内阻Ω
从这个公式可以得知,Johnson噪声可以通过降低温度,减小测量的带宽来减小。减小测量的带宽相当于增加仪器的响应时间;因此,额外增加滤波,通过增加仪器的积分时间(典型值为电源周期的整数倍)来减小带宽。
地线回路
当信号源和测量仪器都连接到同一地线上时,地线回路就形成了(如图2a)。比如说这样一种情况,几台仪器在不同机架上,电源插在同一接线板上。经常在地线上的不同点处有不同电位。这个电位差--甚至很小的--就能形成电路中很大的电流并产生不希望的电压降。解决的方法是将整个测量电路以一点接地。最简单的办法是隔离DUT(源)并且为测量系统找一个单一的良好接地点,如图2b。要避免将灵敏测量线路与使用中的其他仪器,机械装置及大功率设备接入同一地线系统。
磁场
磁场能在如下两种环境下产生虚假电压:1)如果磁场随时间变化,2)电路和磁场有相对运动(图3a)。导体在磁场中的运动,测量系统中的元件引起的本地的交变电流,或磁场的有意的变化如磁阻测量等都能产生变化的磁场。
为使感应出的磁感应电压最小,引线必须被放置在一起并系紧以减少移动。双绞电缆从两方面减小磁场效应:一,减小磁场影响的闭环区域;二,双绞线上相邻闭环产生的电压极性相反可以互相抵消。(图3b)
低电阻测量
低电阻(<10Ω)最好是用加电流源测电压的方法测量。对极低电阻(微欧或更小)或其他有功率限制的地方,常常要用到纳伏表。因此,所有前面提到的低电压技术和误差源,在这里都适用。低电阻测量还多些其他的误差源。
关键字:低电压测量 稳定性 误差源
引用地址:
找出影响低电压测量稳定性的误差源
推荐阅读最新更新时间:2024-03-30 23:21
RLS磁编码器增强两轮自平衡机器人小车的稳定性控制
广告摘要声明广告 在设计两轮自平衡机器人小车时,精确、快速地测量角度旋转是一项关键要求。除此之外,零部件的重量和尺寸最小化也同样重要。东京电机大学 (Tokyo Denki University, TDU) 工学部的学生,利用雷尼绍关联公司RLS的RM08磁旋转编码器解决了这个问题。 背景 东京电机大学是一所致力于科学和技术教育的高校,于1907年由两位年轻的工程师广田精一和扇本真吉创立,其办学宗旨是推动工程学科教育,为国家经济发展奠定基石。 石川淳先生在TDU的机器人与机电一体化学科任教,并且在机器人控制系统开发等多个技术领域开展先驱研究。石川淳先生向工学部的学生们提出一项考验:制作一辆两轮自平衡机器人小车。在这个项目中,学生
[机器人]
吉时利电源/负载电路组合的稳定性分析
为了分析2300系列电源/负载电路组合,整个电源建模为由一个理想误差校正放大器、一个理想放大器输出级和一个理想反馈感测放大器组成的反馈网络(见图1)。感测放大器直接测量负载电压,促使电源输出升高电压来克服测试线和夹具的损耗,以确保所需电压(或设置电压)被施加至负载。电缆和测试夹具连接/DUT建模为集总元件,其中DUT和测试夹具根据主要组件的定义建模为DUT的并联电容。 图1. 2300系列的简化测量原理图,具有电抗负载和远端感测反馈。 反馈网络的性能用波特图分析,图中显示了增益和相位性能是频率的函数。图2示出了2306电源至开路的环路增益和相位性能——实际是性能好的阻性负载。在稍大于1MHz的频率上,环路增益降至0dB(单位增
[测试测量]
如何提高LED显示屏远距离通讯的稳定性
众所周知,数据传输是工业控制领域一个非常重要的环节,数据传输的稳定程度直接影响到产品的可靠性。因此如何提高数据传输的可靠性和稳定性便成为工程师不得不面对的课题。下面以本公司的LED生产看板显示屏项目实施过程中出现的问题为例阐述一下在使用RS-485作为远距离数据通讯手段时要注意的事项。 本项目中的LED看板显示屏是安装在生产车间用来显示实际产量和目标产量的看板,6块规格相同的显示屏分布在6个车间。相邻车间之间电缆线长度大概在150~200m之间。距离之长加上车间里运行的电机的干扰,使得LED看板显示屏通讯不正常,从而频繁出现乱码的现象。 经过仔细的分析,多次的试验,我们先后从多方面着手:硬件电路的改进、上位机和下位
[电源管理]
车企如何保证动力电池的稳定性?
动力电池是电动汽车的关键部件,目前车企的动力电池及BMS系统大多靠外部采购,如此一来,车企面临的一个很重要的问题就是如何对供应商进行管理,其核心是如何对不同供应商来源的电池相关产品进行一致性管理,包括硬件的合并和模块化以及软件算法和数据分析等。这种管理直接影响电池的安全性、耐久性和动力性,也就直接影响电动汽车的安全稳定运行性能,同时,对汽车的售后维护也有非常大的影响。本文从多供应商产品管理角度来探讨车企对动力电池系统的管理问题,尤其是在整个车辆完整的生命周期里对这一问题的重要性和影响进行审视。 第一部分 两类车企的电池供应案例 我们还是拿两个比较典型的案例来看这个事情,国外选通用、国内选北汽。 1)通用汽车 通用汽
[汽车电子]
以动物骨骼为灵感开发出钠正极 稳定性大大提升
据外媒报道,钠离子电池有望取代锂离子电池。近日,成均馆大学、得克萨斯大学奥斯汀分校和布鲁克海文国家实验室的研究人员以动物骨骼为灵感开发出钠正极,研究人员Ho Seok Park表示:“大自然的神奇为我们解决技术问题提供了非常多的启发。我们希望能从动物骨骼上找到可实现的架构源头,解决钠离子电池在动力学和稳定性方面的局限性。 众所周知,锂电池自诞生以来就成为了电子产品能量之王,没有对手,从智能手机到笔记本电脑,然后到新能源汽车无一不是使用锂电池。同时也存在严重的过热问题,偶尔还会爆炸。所以在过去的十年里,为了规避这个致命的难题,无数科学家们一直在致力开发另一种电池:钠电池。 与锂离子电池相比,钠电池能量高、安全性优越很多,
[汽车电子]
具有实用性和稳定性的MSP430单片机心肺听诊技能训练系统
随着社会的发展, 医疗体制的改革, 媒体的宣传, 民众的法律意识大大加强, 一系列医疗法规的出台, 进一步明确了病人的各项权益。病人, 这一以往传统医学教学的主体更多的选择拒绝配合教学工作。 而近年来医疗纠纷的增多与医患关系的紧张, 出于自身利益的考虑, 医院的教学性能不断削弱。医学院校在临床医学教育中的常规模式是: 理论教学+ 单项技能训练-- 见习--临床实习。但由于种种原因, 见习不能有效开展, 从而导致“理论教学+ 单项技能训练”这一教学模式的形成。基于以上现实情况, 医学院校内教学的尴尬局面迫切需要改变。将“ 模拟教学”引入校内教学流程, 形成“理论教学+ 单项技能训练——模拟教学——临床实习”新型的临床医学教学模式
[单片机]
用MAX2648 5GHz LNA设计获得高频稳定性
MAX2648 LNA在5GHz至6GHz频段具有17dB的增益和1.8dB的噪声系数。与所有优秀的微波器件一样,MAX2648 LNA工作在高频时(高至20GHz)具有极高的增益。众所周知,如果不采取适当的微波设计技术,这种放大器在频率大于10GHz时潜在着自激振荡的可能。本应用笔记阐述了MAX2648 LNA微波匹配电路的设计方法,在保证稳定工作的前提下获得尽可能高的性能指标。 设计中要考虑的因素 以下是设计高性能微波LNA时需要考虑的因素: PCB材料的选择 元件的选择 电源旁路 输入和输出匹配电路 PCB材料的选择 在5GHz频段,低噪声放大器前、后的传输线损耗都是显著的。放大器输入端的线上损耗尤其重要,因为这种损耗将直接
[电源管理]
利用改进型CCM小信号模型预测环路稳定性
摘要 本文中,我们利用连续电感器电流条件下有源钳位正向转换器的峰值电流模式(PCM)改进型小信号模型,预测UCC289X应用的实际环路稳定性。为了验证计算结果的有效性,我们通过实际测量基于UCC2897 EVM样机,并建立UCC2897A仿真模型来进一步证明。其结果表明,基于改进型小信号模型的计算结果也可以精确地预测实际环路稳定性。 1、 引言 随着电源可靠性评估的不断发展,使用特定环路分析仪器进行环路稳定性测试成为目前唯一必不可少的要求。但是,在实际开发过程中,工程师们常常在环路稳定性功能调试上面花费太多的时间。例如,使用有源钳位转换器时,我们总是会碰到环路稳定性问题,因为很难在大信号负载动态和小信号环路稳定性之间实现一种
[模拟电子]