频谱分析限制RF功率和寄生噪声辐射

发布者:rnm888最新更新时间:2016-09-02 来源: eefocus关键字:射频功率  频域测量  频谱  矢量信号分析仪 手机看文章 扫描二维码
随时随地手机看文章
射频功率的频域测量是利用频谱和矢量信号分析仪所进行的最基本的测量。这类系统必须符合有关标准对功率传输和寄生噪声辐射的限制,还要配有合适的测量技术来避免误差。

像频率范围、中心频率、分辨带宽(RBW)和测量时间这些有关频率的关键控制都会影响测量结果。

频率范围指的是分析仪所能捕获的总频谱分量,而中心频率相当于频率范围的中心。应该注意像频率范围这类频率控制决定了仪器前面板上的频率范围。另一方面,根据频率范围的大小不同,FFT信号分析仪有两个截然不同的采集模式。

仪器中高达RBW的频率范围的实现方式是:对一段频率进行下变频,然后对下变频信号进行数字化。而对于超出RBW的频率范围,按顺序对频谱段进行变频和数字化。RBW控制频率轴上的频率分辨率。在传统的分析仪中,利用一个窄带滤波器来扫描频率范围来实现频谱显示。滤波器带宽决定了频率轴上的分辨率,因此也是控制的标志。

与此同时,采用FFT的分析仪没有模拟滤波器,而是采用FFT和相关的窗口参数(windowingparameter)来确定频率分辨率或者 RBW。与传统的频谱分析仪不一样,目前最新的采用FFT的分析仪可以选择窗口来限制频谱泄漏并改善频域中间隔较小频段的分辨率。那些对FFT分析仪以及 FFT熟悉的人们也许会问,RBW频率分辨率与FFT的抽头的宽度是什么关系?表1显示了在新型的RF信号分析仪中RBW频率分辨率参数(规定在3dB和 6dB处的RBW分辨率)与FFT抽头宽度的关系。

表1:RBW频率分析分辨率与FFT分析仪的抽头宽度相关

采用FFT的分析仪具有窗口选择,用来限制频谱泄漏并改善频域中间隔较小频谱的分辨率。而传统的频谱分析仪则没有这一功能。传统扫描式分析仪的测量时间(或扫描时间)与RBW的平方成反比,这是由模拟滤波器的建立时间确定的。如果要通过降低RBW来改善频率分辨率,则扫描时间要呈指数增加。

相反,随着RBW的降低,FFT信号分析仪所进行的采集更长,运算量也更大。随着DSP器件速度的加快,测量速度更快,从而实现更高的分辨率或更窄的RBW测量。

图1:频谱分析仪测量结果的频率和幅度关系

幅度设置

不同的幅度控制也会影响测量结果,这些包括参考电平(reflevel),衰减器设置和检测模式。参考电平设置了频谱分析仪的最大输入范围。它控制Y轴,这一点与示波器上的“volts/div”相似,必须将其设置到刚刚大于所期望的最大功率测量值。

最佳参考电平的取值要使得最小的仪器失真(使输入信号饱和的非常低的参考电平导致)和最小的噪声基底(参考电平过高,减小了仪器的灵敏度和动态范围而导致)取得平衡。有时候,设置一个低参考电平对于宽带噪声测量是有好处的,尽管产生一些仪器失真。当能够认可失真时,这样做会改善仪器的灵敏度,并且保证在测量中将其排除在外。

衰减器设置控制也决定仪器的输入范围。该设置通常被设置到自动模式,软件根据参考电平来调整衰减器的值。

在固件中,频谱分析仪将显示器的Y轴与参考电平或衰减器联动在一起。虚拟仪器则没有限制,如果需要时,显示器的Y轴可以与这些控制相脱离。该功能可以实现频谱的可视化缩放,而不影响仪器的幅度设置。注意,参考电平和衰减器设置都影响可编程衰减器,故只需设置其中的一个即可。

检测模式是另一种幅度控制方式,可用于传统的扫描频谱分析仪,但不能用于基于FFT的分析仪。可分为普通、峰值、采样或负峰值等模式,具体检测模式决定了频谱分析仪如何减

少频谱信息的,或者说如何压缩频谱信息。

另外它还影响总的功率测量。当频谱数据点超过频谱分析仪所能显示的点数时,分析仪将从数据减少策略中获益。这将使检测模式改变功率测量。

表2:频谱分析仪测量模式能够影响功率测量结果

影响精度的因素

频谱分析仪采用起始和终止频率之间的频率扫描。一个模拟斜坡信号产生该频率扫描信号,而起始频率由来自高精度的时间基准信号合成。于是,测量精度由模拟斜坡信号和IF滤波器的中心频率所决定。

基于FFT的分析仪,没有这样的模拟斜坡信号,故没有这些因素的限制,从而在整个测量范围内具有一致的精度。范围内的精度则取决于时基和测量算法,故可以比较容易地获得频率精度和重复性。

在传统型扫描分析仪中,频率误差的原因包括基准频率误差,频率范围精度(范围的5%)和RBW(RBW的15%)。相应地,在基于FFT的分析仪中的频率误差则包括基准频率误差和RBW,具体取决于测量算法,变化范围为RBW的>50%到<10%之间。

为了比较这些误差,就必须忽略基准频率误差,这是因为可以使用一个像铷时钟这类的精密频率源来对其进行补偿。在扫频式频谱分析仪中,当频率范围大于 50kHz以及RBW设置超过1kHz时,测量性能将受到影响,除非采用最优化的技术,例如将100MHz的频率放置到频率范围的中心。

如果采用较小的RBW,意味着测试时间的拉长,这是因为扫描时间的问题,因为通常的频谱分析仪中需要150-200ms的扫描时间。测量算法限定了基于FFT的分析仪的测量精度。例如,先进的光谱测量分析工具包中采用了内插技术,可实现比RBW能够实现的更高分辨率,就像上述的例子中,RBW设置到2kHz将会保证更高的精度。

基于FFT的分析仪采用可以实现精确测量的高RBW设置,即便是没有利用精度优化的测量技术。这意味着在相同的测试时间内可以实现更快和更精密的测量。信号分析仪能够执行长度小于20ms的测试样本,这比频谱分析仪高6倍。

除非采用了合适的测量设置,否则即便是对于同一台测试仪器,也会导致的测量结果很大变化。因此,深入理解工作原理对正确地设置测量仪器来说是至关重要的。

关键字:射频功率  频域测量  频谱  矢量信号分析仪 引用地址:频谱分析限制RF功率和寄生噪声辐射

上一篇:LCR测试仪的功能与正确使用方法
下一篇:矢量网络分析仪在移动网络建设和维护中的应用

推荐阅读最新更新时间:2024-03-30 23:22

是德科技手持频谱仪实现实时频谱分析功能
是德科技的手持频谱仪是微波频段上除台式频谱仪外的另一个拳头产品,于2008年正式面世,此后一直基于该平台增添不同的功能。是德科技通信解决方案事业部射频微波产品经理刘斌介绍道。 2016年10月,是德科技宣布提供业界第一款高达50GHz、具有实时频谱分析(RTSA)功能的手持式分析仪Fieldfox RTSA,正式支持微波频段。 刘斌指出传统的频谱仪有些类似调频收音机,在调节到某一个频率的时候,只能接受到一个台的信号,其他会漏掉。而现在通过该产品,可以确保信号不会丢失,实现更精准的发现和分析。“这主要用来捕获一些偶发脉冲信号,或者平时隐蔽起来的新号,比如考试作弊用的无线发射器或伪基站,再或者危险品爆炸品的无线遥控监测等等,这
[测试测量]
频谱分析仪和网络分析仪区分
分析仪在电子检测分析中应用很广,而它更是有着起不同作用的多种分类。 频谱分析仪是用来分析各频率上的信号强度的,比如一台FM发射机标定的频点为153.000MHz,如果在153M附近2M的位置上看到频谱反应都比较高,说明发射机的带宽有2M左右,而且如果发射机在发射时看到51M、102M、204M、255M等频率上都有较高起伏,说明发射机的带通滤波不良,没有滤除三次谐波(以上频率仅举例,相关频点与发射机的倍频方式有关)。 模拟的频谱分析仪称扫频仪,即相当于一台不停的变化接收频率的接收机,然后将各频率上接收的场强幅度显示出来。数字式的频谱分析仪是先进行宽频采样,然后通过DSP做FFT处理实时得到频谱信息。 网络分析仪是
[测试测量]
苹果劝FCC为5G保留更多未授权频谱:为iPhone铺路
5G作为互联网的下一个大风口,手机厂商必然要做准备,而且是全力做准备。 据美国媒体报道称,苹果正力劝美国联邦通信委员会放弃售卖其计划用来实现5G无线技术的超高频光谱的打算,转而向企业免费提供这些无线频谱。 苹果公司建议FCC保留更多不收取授权费的频谱,就像过去FCC对Wi-Fi做的那样。对此他们提出了两点建议,第一,建议FCC增加用于非授权用途的频段比例,这不同于以往该机构更偏爱的授权模式。第二,建议拓宽非授权用途频谱。 此举也引来外界的关注,据说苹果已经开始准备支持5G网络的iPhone,而他们最快会在2019年拿出成果。
[手机便携]
频谱分析仪的失锁故障的现象及检修步骤
频谱分析仪故障现象除了常见的开机启动显示故障还有一大故障频谱分析仪失锁故障。 失锁现象通常表现为信号频率偏离设定位置,或看不到信号或携带明显大幅度寄生信号。由于频谱分析仪本振电路复杂,涉及到参考环板、频率合成板、微波驱动板、窄带中频板、YTO、本振倍频放大组件、定向耦合器等电路及微波件。必须首先确认是那个电路单元发生故障。 分析过程:频谱分析仪的本振信号源从自由振荡式发展到频率合成式,因此首先分别输入2GHz和6GHz信号,如果2GHz处失锁6GHz处不失锁,说明是第一本振正常第二本振失锁;如果两个频点均失锁可能为第一本振失锁或第一、第二本振均失锁。原理图如下: (1)判断是否为第一本振失锁,按照“第一本振预置”检查,
[测试测量]
<font color='red'>频谱</font>分析仪的失锁故障的现象及检修步骤
工信部:已规划LTE频谱资源
  C114讯 7月24日消息(南山)工业和信息化部通信发展司副司长祝军在今天的新闻发布会上表示,国务院常务会议决定要推动年内发放4G牌照,工信部也将按照国务院常务会议的精神,统筹考虑LTE技术和产业发展的成熟度,以及基础电信运营企业网络演进发展的需求等多种因素,根据基础电信运营企业的申请,适时发放LTE牌照。   祝军表示,目前工信部已经规划了适用于LTE发展的频率资源,有序地推进了TD-LTE扩大规模试验,利用科技重大专项等项目,推动TD-LTE研发及产业化。目前,在15个城市开展试点,已经取得了很好的效果,大部分城市的规模试验网已经建成,TD-LTE的基站数已经达到了2万个左右。下一步,工信部还将从码号资源、行业标准、设备
[网络通信]
示波器FFT进行频谱分析靠谱吗
示波器被评为最常用的电子调试工具,因其强大的功能和通用性被广泛的应用。但随着电子技术的发展工程师测试的复杂程度大大提升,会面临更快信号,更复杂的混合信号调试甚至很多信号的频谱分析工作,很多工程师们认为示波器FFT进行频谱分析不靠谱,有很多的缺点: 示波器FFT分析是通过调整水平时基来改变RBW,波西观测和频谱分析两者不可兼得。 进行很小RBW的测试场景,需要增大水平时基,严重影响了示波器处理速度。 操作方法不友好,无法直接设定频谱分析的条件。 只显示满屏信号的分析结果,无法在时域频域同时获得最优的信号呈现 动态范围有限…… 这些问题都越发让工程师头疼,难道真的要新买专业频谱分析仪才能解决这些问题吗?泰克示波器的
[测试测量]
示波器FFT进行<font color='red'>频谱</font>分析靠谱吗
是德频谱分析仪维修--N9000A自检报错维修案例
经检测,RF前端混频器故障,导致测不到信号,自校准报错。 维修过程 更换损坏器件,工程师调整指标。 维修结果 仪器自检正常,测试信号正常,完成修复。
[测试测量]
是德<font color='red'>频谱</font>分析仪维修--N9000A自检报错维修案例
RF功率器件的设计及应用
为满足晶体管用户的需求,有源器件的功率密度持续增长。商用 无线 通讯 、航空 电子 、 广播 、工业以及医疗系统应用推动固态功率封装随着更小输出级器件输出更高输出功率的要求而发展。对飞思卡尔 半导体 公司而言,为这些应用提供高性能 射频 以及微波晶体管并不是一个大挑战,该公司的产品在特性、封装以及应用工程方面具有明显优势。 飞思卡尔半导体在生产及销售分立和集成射频半导体器件方面具有雄厚实力。该公司采用HV7工艺的第七代硅RF外侧扩散金属氧化物半导体(LDMOS),在3.8GHz范围内具有满足WiMAX基础设施的输出功率和线性性能。飞思卡尔面向工业、科学以及医疗(ISM)应用的高电压HV7工艺支持48V工作电压,该公司还将其大功率
[模拟电子]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved