电源效率测量方法秘籍

发布者:素心轻语最新更新时间:2016-09-12 来源: dzsc关键字:电源效率  测量方法 手机看文章 扫描二维码
随时随地手机看文章
  电源效率是指UPS的整机电能利用率,也就是UPS从外部吸收功率与向负载输出功率两者之的比值。这个数值和UPS电源设计线路有密切的关系,高效率的电源可以提高电能的使用效率,在一定程度上可以降低电源的自身功耗和发热量。通常在线式UPS的电源效率一般能够达到90%以上。如果需要增配大中容量的交流不间断供电设备,最好选用电源效率高的在线式UPS.而其他UPS的电源效率在80%左右。EP谐波吸收装置可有效保护UPS对电网络的不良影响。本文将向大家介绍测量开关电源转换效率的两种不同方法。

  所需设备

  1. 一个可程控交流电源供应器或一个自耦变压器

  2. 一个电子负载

  3. 一个瓦特表和两个数字万用表(其中最好有一个高精度数字万用表,用来测量电流)或者四个数字万用表(其中,一个为真有效值、高精度万用表,用来测量输入电流;一个为高精度万用表,用来测量输出电流)

  直流输出功率仅等于电压与电流的乘积,只需两个万用表即可测量出大小。我们将用一个高精度万用表来测量输出到负载的电流,用一个标准万用表来测量电源的输出电压。由于交流系统中电压与电流之间存在相位角,因此不能简单地将RMS 输入电压与RMS 输入电流相乘来计算输入功率。只有电源消耗的有功功率(P)才是必须考虑的。而返回到电源的无功功率Q,则不应考虑进来。

 

  瓦特表的优点是可以准确测量输入功率,原因在于它能自动校正功率因数。如果没有瓦特表,则可使用两个万用表来测量输入电压和电流。但这种替代性方法与使用瓦特表相比,测量结果的准确性不高,并且还需要对待测电源进行断路。

  直接将电压表跨接到电路板输出端,并与电子负载连接。测量输出端电压时,会不计与负载相连的电缆上的压降。在有些应用中,比如手机充电器或笔记本电脑适配器中,必须计算电缆中的损耗,此时需要从负载测量输出电压。然后将高精度电流表与负载串联,测量输出电流。



  交流接通注意事项

  电源的交流接通注意事项及瓦特表方法:使用的器件采用开/关控制方案,在检测输入电压下快速装上电源,使输出达到满载,这时就可以测量出最差情况下的效率。在大容量电容充电时,装上电源会产生非常大的浪涌电流。如果输入电流表设置为低量程,这会导致其中的保险丝熔断。

 

  针对不同 SMPS控制方案的建议交流接通程序

  SMPS,扫描电迁移率颗粒物粒径谱仪。 是一种用来测量粒径在3~1000nm范围内的超细气溶胶颗粒的高科技产品。它采用一种静电分级器来测量颗粒物尺寸,并采用凝聚粒子计数器(CPC)来测定颗粒物的浓度。SMPS系统的主要优点有:快速结果;高分辨的数据;宽的粒径范围;实时数据显示;宽的浓度范围。

  如果采用四个万用表的方法,在低输入电压和最高负载下快速装上电源后,首先应测量电源的浪涌电流。然后查阅万用表的数据手册,确认它是否能够在高输入电压下承载如此高的峰值电流。对于所有其它控制方案,接通方法将不会影响效率的测量,建议在检测时缓慢调高交流电压,以便限制浪涌电流。将瓦特表连接到电源输入端,将显示屏设置为平均模式,以便获得较稳定的读数。接通交流输入电压,将它缓慢调高到所需的检测电压。将您电源的负载增加到满载。然后关断电源,将它重新快速装回,继续完成测量。

  瓦特表方法

  将瓦特表连接到电源输入端,将显示屏设置为平均模式,以便获得较稳定的读数。接通交流输入电压,将它缓慢调高到所需的检测电压。将您电源的负载增加到满载。然后关断电源,将它重新快速装回,继续完成测量。在本演示中,电源输出端仪表的测量结果为4.97 伏和4.005 安。电子负载的电压读数为4.48 伏。这是由于输出电缆和万用表电压检测元件上出现了490 mV 的压降,从而突现了测量电源输出端电压的重要性。因此,输出功率 = 4.97 V 4.005 A = 19.90 瓦。瓦特表读数显示输入功率为25.76 瓦。因此,电源效率 = 19.90 瓦/25.76 瓦 = 77.3%.

  万用表方法

  万用表又叫多用表、三用表、复用表,万用表分为指针式万用表和数字万用表引。是一种多功能、多量程的测量仪表,一般万用表可测量直流电流、直流电压、交流电流、交流电压、电阻和音频电平等,有的还可以测交流电流、电容量、电感量及半导体的一些参数(如β)。

  使用万用表时,可以在二极管整流器级将交流电转换为直流电之后来测量输入功率,从而避开功率因数的影响。为提高测量准确性,必须将直流总线级之前的元件中的损耗计算在内。二极管整流桥通常是输入级中损耗最大的元件,因为在最差情况下每个二极管中的压降可达到0.9伏。对于阻抗或压降非常大且可测量的其它元件,使用这种方法也可以计算出其损耗大小。

  连接万用表

  断开整流桥与大容量电容C2 之间的直流总线。断开大容量电容后面的直流总线后,需要用万用表来测量电源的高频开关电流,而万用表无法对此进行准确测量。然后,焊接两条可用来连接万用表和电路的导线。连接一个真有效值、高精度万用表组,测量断路上的电流。使用另一个万用表组测量电压,将它分别连接到直流正极和大容量电容的负极。

  测试程序

  打开交流电源供应器,缓慢将电压调高到所需的检测电压。将电源的负载增加到满载。将输入电流表设置到最高电流量程。然后切断交流输入电压,重新快速装上电源。在本演示中,电源仍提供4.97 伏电压,4.008 安电流和19.92 瓦输出功率。在输入端,直流总线电压为151.6 伏,输入电流为0.166 安。输入功率计算如下:交流输入损耗
 

  现在,必须将整流桥的功率损耗计算在内:

  功率损耗估计值 = 最差情况下的二极管总压降 输入电流= 1.8 V 0.166 A= 0.299 W

  因此,总输入功率 = 25.1656 W + 0.299 W= 25.46 W

  采用这种测量方法,可计算得出电源效率:= 78.2%

  与使用瓦特表测量计算得出的77.3%相比,我们可以看出,用四个万用表进行测量,最后的误差为0.9%.

  提高准确度

  在计算时,除二极管整流桥的损耗外,还应将其他输入级元件,如浪涌限制器、共模扼流圈和数字万用表的电流检测元件的损耗包括在内。要计算这些损耗,需要测量各元件在正常工作情况下的压降,然后用该压降值乘以测得的输入电流。将这些损耗计算在内,将会增大总输入功率并降低计算得出的效率。

  不过,用这种方法测得的结果始终不会像用瓦特表测量输入功率一样准确。测量一系列输入及输出值,确定损耗原因电源效率与输入电压和输出负载有关。*估电源时,通常需要在几个不同的输入电压水平下测量效率,以便更好地判断出电路中的损耗究竟在何处。把得出的结果绘制在图表中,说明满载条件下效率与输入电压的关系。

  接触器的选用应按满足被控制设备的要求进行,除额定工作电压应与被控设备的额定电压相同外,被控设备的负载功率、使用类别、操作频率、工作寿命、安装方式及尺寸以及经济性等是选择的依据。

  导通损耗对效率的影响 开关损耗对效率的影响

  低输入电压下效率下降,这通常是由于电路中的阻性元件产生的导通损耗造成的。这些损耗之所以会在低输入电压下增加,是因为需要较高的电流来维持相同的输出功率。而高输入电压下的效率下降,通常是由于开关损耗造成的。这些损耗来自寄生电容。在高输入电压下损耗增加,是因为寄生电容会在更高的电压下充放电。确定损耗原因并采取纠正措施后,将会得到以下曲线图。设计良好的电源的效率与输入电压的关系。

关键字:电源效率  测量方法 引用地址:电源效率测量方法秘籍

上一篇:简述实时测试的演变
下一篇:简述成分与含量的电测法

推荐阅读最新更新时间:2024-03-30 23:23

电机的4种温度测量方法
电机温度测量方法主要有如下四种:①温度计法;②电阻法;③埋置检温计法;④粘贴测温纸法。这里所介绍的温度试验采用上述第一种方法,温度传感器为实验室较容易制作、价格低、校准方便的铜-康铜热电偶,该热点偶分度号为T型,测试温度范围在- 200~400 ℃之间。 它可把温度信号直接变成按一定规律变换的弱电压信号,通过一块或两块A/D转换卡,与PC机直接相连,使用专门配套温度测试软件,即可同时测试8 点或16点不同位置的温度,并在微机显示器上直接显示所有测试点当前和历史记录的温度数值或温度曲线。该A/D转换卡为智能ISA总线,具有光耦隔离、抗干扰能力强、精度高、可靠性高等特点。 由于温度场和温度传感器的热惯性较大,因此,采集转换一组数据最小
[测试测量]
示波器通道间隔离度参数的意义及测量方法
今天有个使用麦科信示波器的朋友问我,说示波器参数表里有一个通道间隔离度,显示大于等于40分贝,问是什么意思。那么我们就来讲讲示波器通道间隔离度参数表达的含义以及如何测量自己示波器的通道间隔离度。 我们知道,目前市面上大多数的示波器,都是通道间不隔离的,也就是共地的。因此通道与通道之间必然就会存在串扰。串扰是一个通道上的信号影响另一通道程度的量度。在理想的情况下,通道之间应该互不干扰,然而事实却并非如此,两条信号线之间的耦合、互感和互容会引起信号线上的噪声,因此串扰是无法避免的。而通道间隔离度就表达了这个通道间的干扰是在什么范围,数值越大,说明抗干扰越强。 那么具体要如何测量呢? 我们给示波器的通道一接入一个正弦波信号,作为
[测试测量]
示波器通道间隔离度参数的意义及<font color='red'>测量方法</font>
模拟技术知识课堂:噪声系数的计算及测量方法
2.2 关键技术   (1)加偏置的平衡混频器技术   本文采用平衡混频器,用基波混频的方式,把3 mm噪声信号变成中频信号。但一般的3 mm平衡混频器的变频损耗在10 dB左右,而且要求本振信号达到+13 dBm。由于3 mm信号发生器的技术指标是输出大于+3 dBm,因此,很难使混频器正常工作,在这样的电平下,混频器的变频损耗增大了很多,将大于15 dB。固态噪声源的ENR均小于15 dB,因此系统无法正常工作。为此,考虑给混频器的本振端用直流信号加偏置,以减小对本振信号功率电平的要求。解决了本振信号功率小,无法工作的难题。同时,平衡混频器还具有端口隔离度好的优点,使本振相位噪声的影响也减小了。   (2)减小
[模拟电子]
测量方法的分类
测量方法是指被测量与标准量相比较得到比值的方法。从不同的角度,测量方法有不同的分类方法。 1、按实验数据的处理方法分 测量方法可分为直接测量、间接测量与组合测量。用已知标准哦仪器仪表,对某未知量直接测量,不需任何运算,直接得到测量值的方法称为直接测量;对与被测量有关的物理量进行直接测量,然后根据函数关系计算得到被测量的测量方法称为间接测量;将直接测量与间接测量相结合得到测量值的方法称为组合测量。 直接测量的优点是测量过程简单迅速,多用于工程实际;间接测量复杂费时,一般用于解决直接测量不便、误差较大或缺少直接测量手段的物理量的测量,多用于实验室研究;组合测量是一种精度高的测量方法,一般用于科学实验或特殊场合。 2、按测量工具方式
[测试测量]
网络分析仪的结构与测量方法
网络分析仪测量方法   反射系数(G)和传输系数(T)分别对应入射信号中反射信号和传输信号所占的比例。图3示意了这两个向量。现代网络分析基于散射参数或S-参数扩充了这种思想。   S-参数是一种复杂的向量,它们代表了两个射频信号的比值。S-参数包含幅值和相位,在笛卡尔形式下表现为实和虚。S-参数用S坐标系表示,X代表DUT被测量的输出端,Y代表入射RF信号激励的DUT输入端。图4示意了一个简单的双端口器件,它可以表征为射频滤波器,衰减器或放大器。   S11定义为端口1反射的能量占端口1入射信号的比例,S21定义为传输到DUT端口2的能量占端口1入射信号的比例。参数S11和S21为前向S-参数,这是因为入射信号来自端口1的射
[测试测量]
接地电阻测试仪的正确测量方法
  为了得到良好的连接,嵌入的导电电缆必须真正接地。为了确认我们安装的接地系统是否可靠接地,也就是接地电阻和地面之间是否有电阻。   但是,在不清楚100%接地的情况下,最大基准值来自接地电阻对大地的电阻,该电阻小于2欧姆。   如何知道安装的电阻值或接地电阻是否达到基准值,因此可以说安装的接地系统是正确的。为了找到这一点,必须使用接地电阻测定器,测量安装的接地电阻。该测量仪一般称为接地电阻测试仪或接地电阻测量设备。如何使用接地电阻测量仪确认安装的接地系统的状况?   为了得到正确的测量结果,有必要正确地进行接地电阻的测量。接地电阻测试仪应该如何使用才能准确测量?测量良好的接地或接地电阻接地测量(接地)的方法该接地电阻
[测试测量]
温湿度计的测量方法和技术指标
温湿度计湿度定义:在计量法中规定,湿度定义为 物象状态的量 。蒸汽流量计说:日常生活中所指的湿度为相对湿度,用RH%表示。总言之,即气体中(通常为空气中)所含水蒸气量(水蒸气压)与其空气相同情况下饱和水蒸气量(饱和水蒸气压)的百分比。湿度很久以前就与生活存在着密切的关系,但用数量来进行表示较为困难。对湿度的表示方法有绝对湿度、相对湿度、露点、湿气与干气的比值(重量或体积)等等。 湿度计分类:按测量方法分类1.干湿球湿度计;2.露点湿度计;3.毛发湿度计4.库伦湿度计;5.电化学湿度计;6.光学型湿度计 湿度测量方法:温湿度计湿度测量从原理上划分有二、三十种之多。但湿度测量始终是世界计量领域中著名的难题之一。一个看似简单的量值,
[测试测量]
温湿度计的<font color='red'>测量方法</font>和技术指标
三相电路的功率及测量方法
三相负载所吸收的平均功率等于各相负载吸收的平均功率之和,即有: (4-5-1) 式中, 、 、 分别为三相电压有效值; 、 、 为各相电流有效值; 、 、 表示各相电压电流之间的相位差。 在对称三相电路中,各相电压和各相电流有效值均相等,即 , ,各相负载阻抗相同,因此各相电压电流之间相位差也相等, ,则对称三相负载的平均功率为 (4-5-2) 对于Y形联结的三相对称负载,线电压 ,而线电流 ,代入上式有 (4-5-3) 如果负载为△形联结,则有 , ,代入式(4-5-2)后得到与上面相同的三相功率表达式。可见无论是Y形
[模拟电子]
三相电路的功率及<font color='red'>测量方法</font>
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved