以旋转变压器为测量元件的7M CNC伺服系统

发布者:eaff86最新更新时间:2016-09-26 来源: eefocus关键字:旋转变压器  测量元件  伺服系统 手机看文章 扫描二维码
随时随地手机看文章
1.软件部分

与7360系统的伺服控制一样,7M系统也是采用实时中断实现伺服控制的。与7360系统不同的是,7M系统的差补计算部分每8ms进行一次,计算出8ms内工作台的进给量ΔDci,而位置控制部分则每4ms计算一次,将计算结果作为一个4ms的进给指令,经过计算机接口输出。位置控制部分的计算过程为:

(1)跟随误差的计算。设上一个4ms开始时工作台的实际位置为DFi-1,从位置检测组件获得的上一个4ms内工作台实际位置增量为ΔDFi,那么本次4ms周期开始时工作台的实际位置为

(5—14)

设上一个4 ms结束时指令位置为Dci-1,那么,本次4 ms的指令位置为

(5—15)

因此,本周期的伺服系统跟随误差,或称位置偏差为

(5—16)

(2) 进给速度指令的计算。与7360系统相同,为了控制的需要,要将跟随误差转化为进给速度指令,即根据E值的大小,按下式求出进给速度指令vDA值,即

(5—17)

此外,由于位置控制系统特别是速度控制装置的零点有误差,在给定的速度指令电压为零时,速度控制装置的输出电压不为零,使直流伺服电机(执行元件)仍以慢速旋转。因此,需在软件中补加一个零点偏移补偿量ΔS,使补偿后的直流伺服电机停止旋转。所以,实际的速度指令值的计算应为

(5—18)

2.硬件部分

(1) 位置控制输出组件。位置控制输出组件线路如图5-55所示,速度指令寄存器寄存从工业处理机来的速度指令值vDA,其0~12二进制位存放速度值,第14位是符号位,最大指令值为 +8191,最小指令值为 -8191。数模转换器由可预置数的减法计数器组成,定时向计数器置入速度指令值,然后以一定的速率减到零,可将数字量的速度指令值转换为调宽脉冲MP,脉冲周期等于置数周期,脉冲宽度τ与vDA成正比。在7M系统中,为了减少电路误差对精度的影响,将数模转换器的减法计数器分成粗计数器(9~12位)和精计数器(0~8位)两部分。两个计数器的置数周期T均为128μs,粗计数器的计数时钟为125 kHz,最大计数值为15;精计数器的计数时钟为4 kHz,最大计数值为511。

调宽脉冲是不带符号的,为此,需将MP变换成可表示正负值的调宽脉冲NP。此外,为了输出电平稳定精确,还需将脉冲变换成标准幅值,完成这一功能的电 路是模拟开关。关于模拟开关电路参见鉴幅式伺服系统一节的检波器线路。

滤波放大器由运算放大器T1和T2等组成,如图5-55所示。T1是放大倍数为1的高输入阻抗电路,T2将粗精调宽脉冲NPC和NPF按16倍的比例混合,并且滤掉脉冲成分,将直流成分放大到所需的电压VP。

图5-55 位置控制输出组件线路图

按图5-55的滤波放大电路,可写出VP的计算公式:

(5—19)

当VNPC和VNPF均为2.5 V(相当于vDA=0)时,VP应为零,将各电阻值代入上式,可求得标准电压VRD为2.023 8 V。那么,VP就可表示为

(5—20)

根据选用的执行元件不同,VP还要转换成驱动这些执行元件所需的形式,即 还要经驱动放大环节,如伺服阀放大器、可控硅驱动线路等。

(2) 位置检测组件。位置检测组件由检波器、电压频率转换器和sin/cos发生器、实际位置计数器等电路组成,其方框图如图5-56所示。

由sin/cos发生器产生的8 kHz的正弦余弦电压被送到旋转变压器的定子绕组(或感应同步器的滑尺),在旋转变压器的转子绕组(或感应同步器的定尺)上感应出电压信号VC。VC作为输入信号送到检测装置,先经过10 kHz低通滤波器滤去信号的高次谐波成分和干扰信号。滤波器的输出被送到检波器,把交流信号变换为直流信号VE。再经过6 kHz低通滤波器滤去8 kHz的脉动成分,输出平滑的直流电压VF,VF送到电压频率转换电路,转换为频率与VF成正比的脉冲CVFC, VF还被送到符号检测电路,检出VF的符号SIGN。CVFC和SIGN经同步电路后,被送到sin/cos发生器和实际位置计数器,以控制旋转变压器激磁信号中电气角α的变化,并根据α角产生脉宽调制的正弦余弦电压,同时,使计数器计数,计出的数字表示一段时间内坐标位置的移动量DFi。

电压频率转换电路和低通滤波器、检波器线路参考鉴幅式伺服系统。

图5-57 脉宽调制式的sin/cos发生器的方框图

脉宽调制式的sin/cos发生器的方框图如图5-57所示。它由混合电路、两套分频比为1000的计数器和正弦余弦波形组合门电路以及驱动器等组成 。混合电路的作用是根据脉冲CVFC及其符号SIGN ,使计数器1多计脉冲CVFC所表示的数和使计数器2少计CVFC所表示的数;或使计数器1少计CVFC所表示的数和使计数器2多计CVFC所表示的数  。在混合电路中有一只J-K触发器作为计数器,所以sin/cos发生器总分频比为2000  。当计数器的计数脉冲是16 MHz时,计数器输出频率为8 KHz的方波,相当于2π rad的脉冲数为2 000,每个脉冲为π/1 000 rad。脉宽调制式的正弦余弦波形可用波形合成的方法产生。如果计数器的输出波形A滞后α角,计数器1的另一端输出B比A滞后90°;计数器2的输出C导前α角,计数器2的另一个输出D比C滞后90°。再把A,B,C,D四个波形加到组合门电路,合成E,F,G,H的工作波形,其逻辑关系为

此组合电压经驱动电路加到旋转变压器(或感应同步器)的激励绕组两端,激励绕组上实际承受的电压是两端电压的偏差值,即

此V1和V2就是所要求的余弦和正弦调宽脉冲的波形,各工作波形如图5—58所示。图中α为脉冲宽度的相角,可在0~360°范围内变化。用傅里叶级数分析,可得出sin和cos函数的基本成分为

(5—21)

(5—22)

式中为ω角频率,ω=2πf,此处,f是正弦和余弦波形的频率,本系统中采用8kHz。

图5-58 sin/cos发生器工作波形

关键字:旋转变压器  测量元件  伺服系统 引用地址:以旋转变压器为测量元件的7M CNC伺服系统

上一篇:电容式触摸测试MCU灵活性
下一篇:基于神经网络优化的油水界面软测量

推荐阅读最新更新时间:2024-03-30 23:24

电液伺服系统控制器设计研究
0 引言 随着电液伺服控制理论的发展, 很多先进的控制策略被应用于电液伺服控制领域中。如: 文献 阐述了基本运算为不完全微分PID的滤波型二自由度控制算法, 针对飞行仿真转台用液压伺服系统的特点进行了仿真研究。文献 研究了基于RBFNN 的PID控制在电液位置伺服系统中的应用。文献 对电液位置伺服系统采用滑模变结构控制, 用最优控制理论设计滑模平面, 均取得了良好效果。但大量文献均是理论与仿真研究, 大多的工业应用仍然以模拟电路实现PID控制算法为主, 主要原因是实现这些先进的控制算法的方法目前都是由负责控制的下位机用程序实现的, 而计算机易出现死机、掉电等情况, 这使液压系统可靠性和安全性都降低。 笔者介绍了一种用基于FPGA的
[嵌入式]
全数字伺服系统中位置环和电子齿轮的设计
摘要:分析了伺服系统中位置环和电子齿轮的工作原理,同时介绍了一种位置环和电子齿轮的数字实现方法。最后通过实验验证了该设计的可行性。 关键词:伺服系统;位置环;电子齿轮     0    引言     随着电力电子和数字控制技术的发展,越来越多的控制系统采用数字化的控制方式。在目前广泛应用于数控车床、纺织机械领域的伺服系统中,采用全数字化的控制方式已是大势所趋。数字化控制与模拟控制相比不仅具有控制方便,性能稳定,成本低廉等优点,同时也为伺服系统实现网络化,智能化控制开辟了发展空间。全数字控制的伺服系统不仅可以方便地实现电机控制,同时通过软件的编程可以实现多种附加功能,使得伺服系统更为人性化,智能化,这也正是模
[工业控制]
基于AU6802N1的旋转变压器信号接口电路的设计和应用
  光电编码器因测量精度高,在伺服用永磁同步电机位置检测中广泛应用。但它有抗震性差的缺点,难以适应恶劣工况。旋转变压器具有抗震性好、耐腐蚀、耐高温和易实现高速位置检测的优点,通常在矿山、纺织用伺服系统、航空用电力作动系统等恶劣环境中应用。   旋转变压器与光电编码器不同,它是一种机电元件,需要将其输出的模拟电压信号转换为数字信号才可输入到dsp控制芯片。本文选用多摩川公司的旋转变压器数字转换器(rdc)au6802n1,设计了一套旋变解码的接口电路板。同时基于永磁电机矢量控制平台对该接口电路进行了实验验证。实验表明该设计方案确实可行,并取得了较好的位置检测效果。   旋转变压器原理    图1 旋转变压器的结构
[嵌入式]
基于MSP430单片机的光电跟踪伺服系统研究方案
  研究设计中利用光敏感器件对特定光波长范围的光信号敏感原理,将四象限光电位置探测器与MSP430系列单片机相结合,根据四象限光电探测器输出电压与光斑位置的线性关系,通过数字PID闭环控制输出电压调节单片机输出PWM 的占空比来实现精确稳定的搜寻和小范围跟踪目标。   0 引言   光电跟踪系统是以光电器件(主要是激光器和光电探测器)为基石,将光学技术、电子/微电子技术和精密机械技术等融为一体,形成具有特定跟踪功能的装置。   目前国内外较先进的光电跟踪系统多以激光测距仪、电视跟踪仪和红外跟踪仪三位一体为核心构成。采用机械方法实现跟踪系统控制起来还不太灵敏。对于一个光电追踪系统,一般通过目标识别、位置信号检测、位置信号处理
[单片机]
基于MSP430单片机的光电跟踪<font color='red'>伺服系统</font>研究方案
伺服系统在包装检测仪器中的应用
随着技术的不断成熟以及标准要求的日异提高,伺服电机技术凭借其无比优异的性能,广泛应用于各种领域。 伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。它的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制非常灵活方便。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统。 伺服系统有着无与伦比的优异性,首先是稳定性好,当作用在系统上的扰动消失后,系统能够恢复到原来的稳定状态下运行或者在输入指令信号作
[测试测量]
基于MSP430F149的变频伺服系统的设计与研究
引言 近年来,伺服系统的发展始终以稳定性、响应性与精度为发展主轴,这也是用户在使用过程中最为看重的几大因素。在机床伺服系统、机器人控制系统、雷达天线控制系统等场合大都由直流伺服电机和直流伺服控制器来完成控制。在这些控制领域中,主要以负载的位置或角度等为控制对象的伺服控制系统 。随着变频器技术的高速发展,在伺服系统中交流变频传动因其功率因数高、反应速度快、精度高、适合在恶劣环境中使用等优点得到了越来越广泛的应用。本文提出一种基于高性能单片机MSP430F149、变频器、变频电机组成的数字式变频伺服系统,并将数字PID算法引入到此系统中,使系统获得了良好的系统静、动态性能。 1变频伺服系统的功能 为达到变频伺服系统的运行可靠、良
[电源管理]
基于MSP430F149的变频<font color='red'>伺服系统</font>的设计与研究
伺服系统的发展和应用常识
随着信息、通讯与自动化技术的发展,种类繁多的自动控制装置逐渐进进了人们的日常生活。网络通讯技术不仅为人们提供了方便的通讯手段,实际上也为各式各样的电子裝置提供了简易可靠的通讯渠道,借助于新式的网络通讯技术与计算功能强大的数字信号处理器芯片(DSP),可以开展出多种具有基本智能的信息家电设备(smart information appliance),例如可以帮助清洁工作的机器人、可供娱乐的电子机械宠物等等。这些结合机械、电子、通讯、控制、信息技术融合装置的核心部分就是具有网络界面的伺服系统控制器(network servo controller)。伺服技术已广泛的应用于我们的日常生活,例如光碟机光学读取头的伺服控制、远控飞机的机翼控
[嵌入式]
<font color='red'>伺服系统</font>的发展和应用常识
基于CAN总线的分布式位置伺服系统设计
伺服系统(servo system)亦称随动系统,其在军事、工业和日常生活中都有着广泛的应用。随着计算机技术和现场总线技术的发展和成熟,也促使伺服系统的实现方式和体系结构在不断地发展,将现场总线应用于运动控制,构成分布式控制的数字控制伺服系统日益受到人们的重视。基于现场总线的分布式伺服系统有很多优点,如连线少、可靠性高、易于系统的维护和扩展等。目前,国外的Siemens、ORM EC Systems、Rexroth等公司已经有各自的分布式伺服系统产品推出;国内有一些单位和学者也进行了该方面的研究,但相关的论文并不多,更没有形成系列产品 。 分布式伺服系统中,电机控制性能和多电机间协调控制性能的好坏直接影响生产过程质量,如
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved