包络跟踪基础原理与测试方案

发布者:晴天7777最新更新时间:2016-10-06 来源: eefocus关键字:包络跟踪基础  测试方案 手机看文章 扫描二维码
随时随地手机看文章

1. 为什么选择包络跟踪技术?

当输出功率达到峰值,即发生增益压缩时,功率放大器达到最高运行效率。对于典型的W-CDMA/HSPA+/LTE制式,当设备以最大输出功率运行时,效率可能高达50%。然而,由于W-CDMA和LTE等现代通信标准使用的是峰均比(PAPR)越来越高的调制信号,效率将会显著降低。而且,由于放大器的幅值响应在压缩区会变得高度非线性化,输出功率通常由于峰均比而无法达到峰值。对于LTE波形,峰均比最高可达7或8 dB,导致功率放大器以远低于最佳功率值的平均输出功率运行。

 

虽然有几种技术可以用来改进功率放大器的功率附加效率,以数字预失真技术(DPD)为例,但包络跟踪技术迅速引起了功率放大器厂商们的注意。事实上十年来,基站一直采用包络跟踪技术,不仅提高了效率,同时也降低了由于能量转化成热量而导致的冷却需求。

2. 包络跟踪技术的原理

包络跟踪技术的原理在于使放大器尽可能地在压缩区运行。该项技术基于这一事实:功率放大器的效率峰值点和输出功率峰值点都会随着供电电压(Vcc)的变化而变化. 图1显示了不同供电电压值下,功率附加效率与输出功率的函数关系。我们可以看出峰值效率的输出功率随着供电电压的增大而增大。

 

图1 不同供电电压下PAE与输出功率之间的关系

 

包络跟踪技术的基本思路是找出瞬时输出功率映射与最优化供电电压值的对应关系,从而使放大器尽可能长时间地处于压缩临界区。理论上,运用包络跟踪技术在这种特定的放大器上得到的PAE如图1中的绿色线条所示。从图中可以看出,有效PAE远远大于采用固定供电电压得到的PAE。基于这些数据,我们可以创建一个查询表(LUT),将输出功率和PAE最优化时的供电电压值对应起来(如 图2)。请注意,在供电电压为1V时出现了一个下限。我们后面会介绍这个下限对带宽的影响。虽然从理论上看通过调节供电电压信号来使PAE达到最大是一个不错的想法,但实际执行是有难度的。当供电电压作为输出功率的函数不断变化时,放大器的增益也会随之大幅变化,导致AM-AM失真增大。这种影响可以通过使用较小范围的供电电压电平来弱化,这需要设计人员在PAE和AM-AM失真之间进行权衡。基带射频波形可以通过DPD(数字预失真)算法来修正包络跟踪导致的失真。

 

图2 最优化供电电压值与输出功率的对应关系

 

图1 中所示的PAE的值是基于连续波信号。根据这些附加效率值和特定波形输出功率的概率密度函数(PDF)就可以估算调制信号的期望PAE,如 等式1所示:

Math 1

 

图3显示的是测试用例1 W-CDMA波形的概率密度函数,波形的平均射频功率为0 dBm,可用于该等式中。通过将波形转换为特定平均输出功率,我们就可以根据这一特定调制信号来估算放大器的效率。

 

图3 测试用例1 W-CDMA波形的概念分布密度函数

 

这种算法将PAE视为随机变量并假设PAE与Pout测量值之间的关系是静态的,即这一关系不会随时间改变。虽然根据图3 的计算,我们可以得到比较精确的PAE近似值,但实际中PAE会由于放大器的记忆效应和温度导致的增益变化而随着时间发生小幅变化。 图4显示了测试用例1 W-CDMA调制波形在固定供电Vcc 下的PAE测量值和计算值,以及在包络跟踪状态下的期望PAE(假定供电电压调节器处于理想状态)。我们注意到PAE的期望曲线和测量曲线非常接近,而且仅在输出功率较高时才开始发生偏离。这种偏离很可能是由于功率放大器的记忆效应。将理想包络跟踪电源下的期望PAE(绿色曲线)和固定Vcc下的测试值(蓝色曲线)进行比较,我们发现理论上在较大的输入范围内前者的值可以达到后者的两倍。

 

图4 固定供电Vcc测试用例1 W-CDMA波形的理论和测量PAE以及ET供电Vcc下波形的PAE

 

虽然包络跟踪可大大提高效率,但是我们需要认识到在包络跟踪功率放大器的设计上有许多要权衡的部分。事实上某个参数的优化需要对系统中的其他参数进行权衡。因此,在给定的输出功率下选择最优的Vcc电平是一个需要反复迭代的设计过程,而且需要能够快速地做出可靠的测试设计决策。

3. 包络跟踪测试挑战

包络跟踪测试使得原本就复杂的系统变得愈加复杂。为了让功率放大器成功地执行一项包络跟踪计划,射频基带波形和供给电压之间必须紧密同步。如图5所示,一个典型的包络跟踪测试系统包括一个射频信号发生器和分析仪、用于控制功率放大器的高速数字波形发生器以及一个用于为放大器供电的电源。

 

图5 典型的包络跟踪测试装置

4. 电源

包络跟踪测试所面临的一项重要挑战是电源波形对高带宽的需求。包络波形对带宽的需求通常远大于射频波形的需求。为了分析这一现象,我们以图2 中所示的电压-输出功率曲线和一个10MHz带宽的LTE信号为例。 图6给出了PAE最优化时的Vcc波形和对应的LTE信号的功率-时间曲线。经过频谱分析表明Vcc 波形的带宽至少比射频波形的大三倍。高带宽需求源于两个因素:一是Vcc是射频功率的函数;二是LUT中的下限(如图2中所示)导致了削波失真。

 

图6 10MHz LTE信号的Vcc波形和PvT曲线

 

事实上对于20MHz LTE波形来说,Vcc波形至少应该有60MHz的带宽——如图7所示。而且当出现宽带数字预失真时,Vcc波形所需的带宽常常高达实际射频信号带宽的5倍。下面我们会介绍,任意波形发生器(AWG)不仅需要有较宽的带宽,而且需要有很高的时间分辨率。

 

图7 10MHz LTE波形频谱和PAE最优化时的Vcc频谱

 

关于供电电压,我们面临的第二项挑战是,任意波形发生器提供的电流不足以支持功率放大器的运行,而且电源的带宽无法满足ET的需求。解决这一问题的方法是使用功率调节器来驱动功率放大器,该功率调节器则由直流电源和任意波形发生器产生的调制Vcc信号来驱动,如图5所示。

5. 仪器同步

包络跟踪测试所面临的最大挑战是确保射频信号发生器与任意波形发生器之间的同步。当我们基于输入功率选择最优化Vcc值时可以使功率放大器的PAE达到最大,但仪器间较差的同步会使得Vcc值时可以使功率放大器的PAE达到最大,但仪器间较差的同步会使得Vcc值相对于给定的输出功率来说太高或太低。

 

考虑Vcc波形滞后于射频波形时的情形:当波形处于峰值功率时功率调节器将无法为设备提供足够大的功率。因此射频输出将会比期望的输出功率低几分贝。而且出现波形峰值后,功率调节器将提供远高于放大器需求的功率,导致效率降低。当Vcc先于射频波形时会出现类似的情况。射频信号发生器与任意波形发生器不仅需要同步,而且这种同步必须是可重复的。

6. 基于PXI的测试解决方案

仪器同步是包络跟踪测试设备的一个重要规范。由于需要满足严格的同步要求, PXI平台无疑是应对包络跟踪测试挑战的理想选择。在PXI测试系统中,模块化仪器之间通过包含若干条时钟和触发分发线的机箱背板互连。这种单机箱集成简化了仪器安置并提高了系统的同步性。除了PXI的先进硬件和NI矢量信号收发器外,LabVIEW软件环境也提供了实时生成和可视化信号的功能,助您提高应用程序的开发和测试效率。

包络跟踪功率放大器通常必须与RF信号发生器结合使用,且Vcc同步抖动需小于1 ns,这就要求测试设备的抖动必须远远低于这个值——最好是100 ps左右。 PXI可借助T-Clock的背板同步程序实现紧密同步。T-Clock是一种用于对齐采样时钟和启动触发器的机制,以使所有设备同步生成信号。例如, NI PXIe-5451 AWG 和NI PXIe-5644R矢量信号收发器经过基准测试,可实现低于50 ps的最大同步抖动,因而可满足这一需求。

 

实现射频信号发生器与任意波形发生器的同步只是我们所面临的一部分挑战。经调制的Vcc信号和RF波形在到达不同的放大器前经由不同的路径,因而具有不同的延迟。因此,以编程方式来使Vcc波形滞后或先于RF信号对于在放大器处以纳秒级偏斜对齐调制电源和RF信号是非常重要的。

 

使Vcc信号以任意波形发生器样本的整数倍相对于RF信号延迟的一种简单方法是在生成脚本的开头嵌入‘等待’循环。为了获得更精准的延迟,可以使用数字滤波器调节矢量信号收发仪中FPGA上软件或硬件的RF波形。采用硬件方法的优势在于其执行时移的速度远快于同等的软件滤波器,从而减少了确定任意波形发生器和矢量信号收发仪之间最佳对齐所需的时间。在400MS/S的额定Vcc采样率下,可以实现任意皮秒级的延迟。

 

该测量装置需要的最后一个测试元件是能够供电和测量的电源。由于功率放大器需要较高的转换速度,该应用往往更倾向于使用电池模拟器,而不是标准源测量单元。注意在某些情况下,如果要对具有MIPI接口的功率放大器进行数字控制,还需要能够在1.8v下产生高达26MHz波形的高速数字波形产生器。

7. 结果验证

使用高带宽数字化仪来验证Vcc和射频信号之间的同步是最为直接的方法。在本例中,我们分别将NI PXIe-5644R矢量信号收发仪和NI PXIe-5451任意波形发生器接到2.5 GS/s数字化仪的两个通道。根据图2中的Vcc -Pout 查询表,矢量信号发生器可在800MHz的条件下产生10 MHz LTE FDD上行波形。首次运行时,由于两个仪器内的线路和DSP延迟,两种波形的时间差大约为1µs。根据前面介绍的延时算法,我们可以通过结合等待采样和子采样延迟来使两种波形对齐。

 

图8展示了上述结果,在该图中,我们对Vcc波形进行缩放,使其与射频波形处于同一量级,以便进行比较。图中显示两组波形相互对齐,但更重要的是,这种关系即使在程序不断运行时一直能保持,即便重启系统也是如此。

 

图8 PAE最优化的Vcc波形与RF波形同步

 

在放大器的输入端,可以借助高速数字化仪对两种波形的对齐程度进行目测检查,但这样无法测量放大器的性能。前面我们论述了同步的重要性,Vcc在放大器的输入端,可以借助高速数字化仪对两种波形的对齐程度进行目测检查,但这样无法测量放大器的性能。前面我们论述了同步的重要性,Vcc和射频的最优化对齐。邻近信道功率衰减量根据设备而异,但在对同步进行最佳校准后使用射频信号分析仪可以大大优化测量结果。

8. 结论

过去十年中,包络跟踪技术经证明可以提高蜂窝基站中功率放大器的效率以及减少损失的能量转化为热量而导致的冷却需求。由于无线标准的不断发展,移动手持设备制造商正在寻求利用包络跟踪技术来获得类似的优势。虽然相比固定电源,包络跟踪技术可大幅节约电能,延长电池的寿命,但它确实也给功率放大器的设计人员和测试工程师们带来了巨大的挑战。本文所述的基于PXI的测试方案可解决测量工作中最关键的挑战,而且测量结果证明这是一个非常出色的ET PA测试方案。

关键字:包络跟踪基础  测试方案 引用地址:包络跟踪基础原理与测试方案

上一篇:选择模块化源测量单元(SMU)的几大测量考虑
下一篇:汽车多媒体测试示例: 多屏同步

推荐阅读最新更新时间:2024-03-30 23:25

物联网硬件平台之最完整的内存测试解决方案
2016年12月,由台湾厂商宏碁、联发科、研华和七大产业联盟共同发起正式宣布成立「亚洲.硅谷物联网产业大联盟」,亚洲硅谷首要的工作就是要推动物联网和创新创业两大主轴。台湾半导体协会理事长卢超群表示『半导体如果只留在IC设计,那绝对会是错的,得往前推进』。正如一些研究报告预测,物联网将大量的应用在未来的M2M,支付系统,运输,产品制造,库存管理,机械监控,装运,牲畜,节能,智能城市,智能建筑,智能能源,智能工业,智能金融和智能健康,因此,我们应该注意新的需求,学会掌握硬件可以发展的智能服务。 过去几十年里,内存发展领域衍生出两个不同的产品线:高速率和低功耗。每个产品线都有着各自特有的功能、应用和价格。然而,对采用可携式电源供电并
[测试测量]
物联网硬件平台之最完整的内存<font color='red'>测试</font>解决<font color='red'>方案</font>
完整的高性能40/100GbE测试方案
在高清点播IPTV、云计算及网络游戏等需求的推动下,电信行业和数据通信行业正随着40Gbps#KEYWORD1#(40GbE)和100Gbps以太网(100GbE)通信协议的兴起而迅速演进到更快的数据速率。为实现这种性能上的演进,元器件、模块和系统制造商们需要高度精确、全面的测试解决方案,来支持所有关键的光标准和电标准 泰克DSA8200数字串行分析仪系列推出新的光采样示波器模块,能有效降低高性能光发射机开发和标准一致性测试的成本。80C10B及选配了F1选件的80C10B F1为下一代40Gbps和100Gbps及以上发射机标准的一致性验证,提供了业内最完整的测试解决方案。 80C10B模块提供了80+GHz的光带宽
[测试测量]
一种基于GPIB和计算机并行口的SoC自动化测试方案
  引言   GPIB(通用接口总线)是国际通用的标准仪器接口。测试仪器供应商一般都提供丰富的GPIB指令集,用户可以直接调用通讯命令,从而大大缩减底层搭建的工作量。   计算机打印接口应用扩展   计算机打印接口(LPT1,也可称为并行口)有三个端口,包括数据输出端口(端口地址为0378H)、状态输入端口(0379H)和命令输出端口(037AH)。一般情况下,计算机打印接口的三个端口通过25脚D型插接件与打印机连接,实现数据、状态和命令信息的传送。本文设计的SoC自动化测试方案主要应用数据输出端口,该端口有一个8位数据输出寄存器,其I/O特性如表1所示。 表1 并行端口数据输出位特性   对数据输出端口发出一条O
[测试测量]
一种基于GPIB和计算机并行口的SoC自动化<font color='red'>测试</font><font color='red'>方案</font>
详解线缆测试仪应用领域及测试方案
1、前言 线缆作为各类设备的 “神经系统”,承担着电力运行、信号传输的重要作用,其质量好坏直接决定设备能否正常运行。因此,在设备生产、定期维修过程中,都要对其内部线缆的物理特性及电气性能进行测试。传统的线缆测试方法主要采用手动和单项测试仪器相结合,单独完成导通测试、绝缘测试以及耐压等测试各项指标,存在着测试效率低、安全性差、复杂线缆网测试难度大、查错困难等问题。随着科学技术的不断发展,采用综合线束测试设备,集成了导通测试、绝缘测试、耐压测试、等众多功能,实现对被测设备整体线缆自动化测试。 2、线缆测试部分需求场景 在航空、航天、船舶、兵器、电子等国防军工装备制造,飞机、高铁等大型设备的生产、检修,电力通信线缆维护抢修过程中,线
[测试测量]
详解线缆<font color='red'>测试</font>仪应用领域及<font color='red'>测试</font><font color='red'>方案</font>
奇梦达将与Advantest合作开发GDDR5测试方案
奇梦达(Qimonda)宣布与Advantest合作,针对GDDR5测试作业开发硬件方案。双方的合作将针对GDDR5绘图DRAM组件开发具成本效率的量产型测试解决方案。 GDDR5将继GDDR3之后,成为下一个绘图DRAM标准。GDDR5内存的效能将超越现有各种绘图标准。其优异效能加上各种新功能,将使得GDDR5适合支持未来的高效能绘图应用,例如PC显卡或游戏主机。 GDDR5标准目前正由JEDEC规划当中。新的I/O标准要成功打入市场,需要高效率的制造技术。而内存测试正是制造流程中相当重要的一环。 奇梦达副总裁暨绘图内存事业部总经理Robert Feurle表示:“Advantest与奇梦达在DRAM测试方面已拥有长久稳定
[焦点新闻]
超实用的汽车电子CAN总线开发测试方案
 是否还在因为没有高端CAN测试仪器,无法进行CAN总线开发而发愁?今天告诉你:CAN卡同样能让你玩转汽车CAN总线开发测试。 CAN总线多用于汽车领域,在CAN总线的开发测试阶段,需要对其单节点性能,多节点组网通讯,网络拓扑结构等进行开发测试,需要虚拟、半虚拟、全实物仿真测试平台,并且必须测试各节点是否符合ISO11898中规定的错误响应机制等,所以CAN总线的开发需要专业的开发测试工具,并且在生产阶段也需要一批简单易用的生产线测试工具。CAN总线开发测试工具主要有CANScope、CANalyst-II、Passiontech DiagRA、canAnalyser、X-Analyser、AutoCAN、CANspider等
[嵌入式]
高阶自动驾驶测试数据闭环解决方案
昆易电子成立于2011年,成立至今拥有有32项知识产权,280多位员工,研发占比60%以上,其愿景是让研发更简单,定位是嵌入式研发汽车测试工具解决方案和服务。服务的行业有汽车、教育、航空航天、轨道交通。产品和解决方案有基础软件的开发、仿真测试平台、数据采集和分析工具、ADAS数据闭环解决方案、测试服务等。 一.自动驾驶数据采集方案 对自动驾驶行业而言,这个领域的传感器特别丰富,有GMSL相机、雷达有如毫米波,激光,超声波,采集的时候也涉及到环境、音频、V2X地图等传感器。 自动驾驶的数据采集中,如视频方面,相机有100万像素,200万像素,300万像素,500万像素等等;相机的数据中,需要对数据的格式做H264、
[汽车电子]
高阶自动驾驶<font color='red'>测试</font>数据闭环解决<font color='red'>方案</font>
求一种车载10GBASE-T1以太网智能测试解决方案
高速车载网络越来越依赖带宽高达10 Gbit/s的万兆以太网通信,然而高带宽网络必将测试系统的性能推向极限。如何通过现有的软硬件测试工具来克服这一挑战?本文将为您介绍实现方案。 现如今,车载平台上的车载高性能计算控制器HPC、ADAS传感器和信息娱乐系统等需要进行实时的大量数据交互,100BASE-T1或1000BASE-T1的车载以太网已无法满足车载网络通信所需的带宽。基于IEEE 802.3ch规范的万兆以太网10G-T1,具有高达10 Gbit/s的传输速率,将在高速网络数据传输方面发挥越来越重要的作用,比如用于传输高分辨率的传感器及摄像头信号,以及高性能骨干网通信。 01 典型Ethernet测试环境 无论是分析、
[嵌入式]
求一种车载10GBASE-T1以太网智能<font color='red'>测试</font>解决<font color='red'>方案</font>
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved