硅片调焦调平测量系统测试平台

发布者:SparklingMelody最新更新时间:2016-10-09 来源: elecfans关键字:硅片调焦调平  测量系统  测试平台 手机看文章 扫描二维码
随时随地手机看文章
  1 引言

  硅片调焦调平测量系统在光刻机中用来测量硅片表面相对于投影物镜的高度和转角(z和θx、θy),与工件台垂向3个执行器构成反馈系统,实时控制硅片的垂向位置,保证硅片当前场在曝光过程中始终处于投影物镜的焦深范围内[1],因此,调焦调平测量系统的性能直接影响了光刻机的曝光质量。为了验证调焦调平测量系统的性能,在它集成到光刻机之前,必须模拟其工作环境对其关键性指标进行检测。工作环境的模拟包括硅片在曝光过程中的三自由度的运动和温度、湿度、气压等条件。由于调焦调平测量系统的精度、重复性要求非常高,因此,测试平台沿z和θx、θy方向需要具有更高的运动精度和高于调焦调平测量系统的测量精度,并且整个平台必须具有很好的稳定性。

  2 硅片调焦调平测量原理

  硅片调焦调平测量系统采用光学成像的传感原理,测量硅片相对于投影物镜的高度和转角。如图1所示,光源发出的光分为测量光束和参考光束,经光阑后分别形成多束光。测量光束聚焦成像后斜入射到硅片表面,经硅片反射后,由光学放大系统成像在光电探测器上[2];参考光束聚焦成像后斜入射到投影物镜,反射后同样成像在光电探测器上。光电探测器实现光信号向电信号的转换,并最终获得硅片相对于投影物镜的高度变化量。利用多点高度值可以计算出硅片的转角。参考光束通过补偿调焦调平测量系统自身位置的漂移,提高系统的测量精度和稳定性。现有步进扫描投影光刻机调焦调平测量系统的精度优于20 nm,测量范围大于500 μm。

  3 测试平台原理

  测试平台在模拟光刻机的工作环境下,采用激光干涉仪作为主要测量仪器。高精度三轴(z和θx、θy)运动台模拟光刻机工件台的垂向运动,由激光干涉仪和硅片调焦调平测量系统同时对硅片的运动量进行测量,通过比较测量结果来评价调焦调平测量系统的性能。

  由于硅片表面反射率较小,对垂直入射的激光束不能完全反射,因而不能作为激光干涉仪的测量面[3],故以承片台上表面代替,记为参考面。调焦调平测量系统的测量面是硅片上表面,如图2所示。测量面和参考面之间存在着高度差,但由于硅片和承片台靠真空吸附在一起,它们之间没有相对位移,把承片台和硅片的位移量作为测量基准,则测量面和参考面之间的高度差不影响系统测量的准确性。

  在调焦调平测量系统的测试范围内,驱动三轴运动台上下移动,在任意位置等台子稳定后同时读取调焦调平测量系统和激光干涉仪的读数,通过比较测量结果评价调焦调平测量系统沿z向的测量精度。测量系统中三束激光的位置关系固定不变,根据干涉仪测得的三点相对高度能够计算出承片台的转角θx、θy。同时,三轴运动台具有很高的运动精度,其偏转量可以作为激光干涉仪测量值的参照。对转角θx和θy进行测量时,驱动三轴运动台使硅片偏转,通过比较调焦调平测量系统所测得硅片的转角和激光干涉仪测得的承片台的转角,可以检测调焦调平测量系统沿θx和θy方向的测试范围和测量精度。

  4 测试平台系统结构

  测试平台由测量单元、运动单元、减震单元和微环境单元四部分组成。

  测量单元包括模拟物镜、激光干涉仪、支架、承片台和硅片。模拟物镜固定在支架上,其底端安装1个与实际物镜底端镜片反射率相同的反射镜,用于模拟实际物镜最底端镜片对调焦调平测量系统参考光的反射功能[4]。测量承片台运动量的3个激光干涉仪沿轴向均布于模拟物镜周围。作为激光干涉仪测量面的承片台,采用上表面镀有高反射率介质膜的微晶玻璃材料加工而成,通过中间的2个气环抽取真空将测试用硅片吸附于承片台上表面,防止测试过程中三轴运动台的快速移动引起硅片相对于承片台的位移。

  运动单元只有1个高精度三轴运动台,用于驱动硅片,其内部的3个运动执行器采用压电陶瓷制作,并配有3个并联的电容传感器为执行器提供闭环测量信号,三轴运动台沿θx和θy方向的运动精度高于调焦调平测量系统的测量精度。

  减震单元位于最底端,包括气浮减震台和大理石板。采用气浮主动减震可以消除地基震动对测量系统的影响,提高测试平台的稳定性[5]。

  微环境单元由布置在测试平台周围的散热片和用于将测试平台密封的玻璃罩构成,为测试平台提供所需要的温度、湿度、气压等条件。

  5 测试平台控制结构

  测试平台控制系统主要由VME机箱、工控机和三轴运动控制器3部分组成,如图4所示。VME机箱是整个系统的核心控制部件,其内部的3个干涉仪数据采集卡实时采集激光干涉仪所测得的数据。调焦调平测量系统控制卡用于控制调焦调平测量系统内部传感器的数据采集和计算。PPC板是整个VME机箱的主CPU板,负责对机箱内各板卡进行设置,同时将它们采集到的数据向外界传送。工控机用来监控测试平台的数据,并对各控制器进行设置。激光干涉仪的测量精度受环境因素影响很大,为了补偿由环境变化引起的测量误差,干涉仪光路附近布置了高精度的温度和气压传感器,工控机把传感器测得的当前环境温度和气压值转换成环境补偿系数来修正激光干涉仪的测量值。

  三轴运动控制器控制三轴运动台沿z和θx、θy方向运动,同时把三轴运动台的当前位置信息传送给工控机。在实际测试过程中,系统以该值作为激光干涉仪测量值的参照。

  6 测试平台控制模型

  驱动三轴运动台将硅片调整到最佳焦平面位置附近,建立如图5所示的坐标系,使xoy面和承片台上表面重合,z轴通过硅片中心。把激光干涉仪计数值清零,则测试过程中干涉仪的读数h即为测量点的z坐标值。当干涉仪在测量系统中安装好后,三束测量光的位置关系便随之固定,承片台上下移动或偏转时,测量点S1、S2、S3的z、y坐标值始终保持不变。

  根据干涉仪的安装位置及光轴在干涉仪上的布置形式,可以确定三光斑的x、y坐标值。设参考面(即承片台上表面)所在平面的方程为:z=ax+by+c,若承片台运动到任一位置时干涉仪在参考面上的3个测量点的坐标值分别为:S1(x1,y1,z1)、S2(x2,y2,z2)和S3(x3,y3,z3),则参考面中心点的高度和参考面的转角应分别为:

  由上式可以根据干涉仪的测量值计算出承片台沿z和θy、θx方向的运动量。

  7 测试结果分析

  在任意位置对激光干涉仪的测量值和三轴运动台的位移量进行比较,以评估测试平台性能。首先在假定的最佳焦平面处将激光干涉仪计数值清零,然后驱动三轴运动台沿z向运动50 μm、θx向偏转100 mrad、θx向偏转-100 mrad,激光干涉仪的测量值和运动台的位移量如图7所示:

  由以上图表可知:干涉仪测得的承片台运动量"Laser"曲线和三轴运动台的位移量"Stage"曲线在一定误差范围内相吻合。测试平台沿z向的测量精度小于±4 nm,沿θx和θy方向的测量精度小于±O.05 urad,远远高于调焦调平测量系统的测量精度,其测量结果可以作为调焦调平测量系统性能的评估依据。

  8 结束语

  该平台在设计时预留了离轴对准模块的安装接口和水平位移平台的安装空间,同时,对承片台2个相邻侧面也进行了抛光镀膜,可以作为激光干涉仪的测量面。对离轴对准模块进行测试时,用激光干涉仪能够精确测量承片台沿x向和y向的运动量。测试平台在满足需求的同时还可以进行功能扩展,是整个光刻机研制过程中一个重要的辅助系统。

关键字:硅片调焦调平  测量系统  测试平台 引用地址:硅片调焦调平测量系统测试平台

上一篇:相变存储器器件单元测试系统
下一篇:表面贴装元件识别的一种亚像素边缘检测方法

推荐阅读最新更新时间:2024-03-30 23:25

基于AVR单片机的温度测量系统
1 引言   传统温度测量系统中,一般选用模拟式温度传感器。常用的模拟式温度传感器,其中一个共同特点是输出为模拟量,因此在测量电路中必须经过A/D转换才能成为计算机所能处理的数字量。数字式温度传感器将非电模拟量转换到数字信号这一处理过程的多个环节集成在单芯片上,实现了在测量点将温度值数字化,有效解决了传统温度传感器外围电路复杂,抗干扰能力差的弊病,降低了对系统的要求。   该系统以Atmel公司的ATmega8L单片机为控制中心,温度测量使用DS18B20单总线数字温度传感器,采用1602字符型液晶显示器作为温度值的显示输出。编程使用CodeVision AVR C Compiler编译器,该编译软件自带了使用器件库函数文件
[单片机]
基于AVR单片机的温度<font color='red'>测量系统</font>
IAR推出 CI/CD 环境中进行高效构建和测试的跨平台构建工具
IAR Systems 推出用于在 CI/CD 环境中进行高效构建和测试的跨平台构建工具 IAR全新的面向 Arm 的构建 (Build) 工具赋能用户在 Ubuntu、RedHat 或 Windows 上建立自动化构建和测试流程 瑞典乌普萨拉—2021 年 11 月 3 日—全球领先的嵌入式开发软件工具和服务提供商 IAR Systems® 宣布:现已提供面向 Arm 的构建工具,该工具支持 Linux 和 Windows,进一步扩展 IAR Systems 用于实现灵活自动化工作流程与自动化构建的产品系列。这些工具支持在跨平台框架中实现自动化应用构建和测试流程,使关键软件构建和测试的大规模部署成为可能。
[嵌入式]
IAR推出 CI/CD 环境中进行高效构建和<font color='red'>测试</font>的跨<font color='red'>平台</font>构建工具
网络协议一致性测试平台设计
目前, 我国网络产品检测的技术水平和能力与国际上存在较大差距,协议一致性测试产品的设计大多停留在测试方法的理论研究上,在协议测试的通用平台方面还缺乏较好的解决方案。   1 网络协议一致性测试概述    网络协议 的一致性测试是一种功能性的黑盒测试,通常包括静态测试和动态测试两类。静态测试是指协议实现者向测试方提交“协议实现一致性声明”与协议中的静态一致性要求相比较,动态测试是运行测试集对DUT(Device under Test)进行测试。   协议一致陛测试包括三个阶段:第一阶段是测试生成,为特定协议产生独立于所有协议实现的抽象测试集;第二阶段是测试实现,把抽象测试集中的测试例转换成可执行的测试例;第三阶段为测试执行,
[模拟电子]
网络协议一致性<font color='red'>测试</font><font color='red'>平台</font>设计
MVG推出多探头测量系统,可进行全尺寸车辆天线测量
无线连接测试专家MVG近日宣布推出多探头测量系统SG 3000M。SG 3000M专为全尺寸汽车天线测量和OTA测试而设计,可将现有吸波暗室升级为用于互联车辆的天线测量和OTA测试设备。 5G技术中基于蜂窝的车辆到万物(C-V2X)将成为汽车行业的游戏规则改变者。在确保远程网络通信(V2N)的同时,将车辆直接连接到其他车辆(V2V)、基础设施(V2I)和行人(V2P)的可能性将驱动多种革命性服务的发展。 为了满足关键任务通信的C-V2X高带宽和低延迟要求,天线性能对于汽车制造商至关重要。从组件评估到全面的OTA评估,对设计天线进行准确,完整的测试,可以根据其支持环境对所有集
[测试测量]
MVG推出多探头<font color='red'>测量系统</font>,可进行全尺寸车辆天线测量
一种通用自动测试软件平台设计
传统自动测试系统缺乏通用性,最根本的解决方法是标准化。本文以ABBET(A BroadBased Environment for Test)标准为主,与ATS(AutomaTIc Test System)相关的其他国际标准为辅,采用符合标准描述的软件层次结构,使用COM组件和CORBA等软件设计技术,开发了面向信号的通用自动测试系统软件平台。采用基于国际标准ATS开发模式,一方面可以使面向信号的测试最大限度地实现仪器无关性和TPS(Test Program Set)通用性;另一方面这种开发模式简化了软件系统架构难度,提高系统的可靠性和兼容性,对外部诊断方法提供了统一的接口。 随着电子科学、材料科学等技术的飞速发展,航空航天设备
[测试测量]
将传感器安装在鞋底里的“步行测量系统
    村田制作所在2012年10月2~6日于日本幕张MESSE会展中心举行的“CEATEC JAPAN 2012”上,展出了将压力传感器和无线模块安装在鞋底中的“步行测量系统”。使用者穿着该鞋后,可通过监测人体重心移动情况,检测跑动、步行及高尔夫运动的姿势,预测康复效果等。 展出的鞋     压力传感器测量的数据可通过“Bluetooth SMART”(低耗能蓝牙)模块传输至智能手机。村田制作所在其展台上利用为此次展示试制的应用,在智能手机的屏幕上显示了使用者脚部所受压力情况的变化。   该步行测量系统主要用于宣传村田制作所的压力传感器和Bluetooth SMART模块的应用案例。压力传感器采用了透明压电薄膜
[医疗电子]
光伏组件户外性能测试平台设计
在传统工作模式电子负载的基础上提出的一种户外 光伏组件 测试平台,以自动切换工作模式的可编程电子负载为核心,实现了对光伏组件IV特性曲线更加精确而完整地测量。它可根据用户设定,使光伏组件在户外环境下,长期保持设定工作状态,并实时监测其输出特性。大量存储的IV特性曲线及环境参数数据,有助于分析光伏组件户外实际工作性能。光伏系统设计人员通过对比不同类型组件户外特性,针对特定工作环境选择适合的组件。平台同时也为光伏组件生产商提供了评估产品的可靠依据。 1 引言 随着近年来国内光伏市场的扩大和分布式光伏发电系统的发展,电站设计人员对各类光伏组件产品性能也提出更高要求。目前,对于光伏组件的电气性能测试主要依赖实验室内的太阳光模拟器,
[电源管理]
光伏组件户外性能<font color='red'>测试</font><font color='red'>平台</font>设计
基于SPCE061A的高精度多通道温度测量系统设计
0 引 言 温度的测量与控制在工农业生产、日常生活及科学研究中有着广泛的应用。由于常用温度传感器的非线性输出及一致性较差,使温度的测量方法和手段相对较复杂,也给电路的调试增加了难度。为此,设计了以台湾凌阳公司生产的SPCE061A 16位高性能单片机为系统控制核心。采用DALLAS公司的DS18B20作为温度传感器的三通道高精度温度测控仪,该测控仪实现了温度数据和日期、时间的显示与保存;可输出显示三组温度和三路控制信号,具有故障和报警状态提示等功能,保证了测试的精度以及系统的可靠性和控制要求。 1 系统硬件设计 多通道智能温度测控仪的硬件电路原理框图如图1所示,测控仪主要由SPCE061A单片机、温度传感器DS1
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved