一种鼠标位移测量技术研究

发布者:画意人生最新更新时间:2016-10-14 来源: elecfans关键字:鼠标位移  测量技术 手机看文章 扫描二维码
随时随地手机看文章
  位移检测技术经过多年发展已经相当成熟,各种位移传感器纷纷出现,但低成本的位移传感器结构简单,精确度不高,线性度低,而高成本的位移传感器虽然性能优异,但制作工艺难度大,难以普及。所以开发一款低成本、高性能的位移传感器具有很高的现实意义。鉴于此,本文提出了通过LabVIEW 编程实现精确度高、线性度好、测量范围大、无需其余硬件设备的鼠标位移测量方法。

  1 鼠标的工作原理及位移测量的实现方法

  1.1 鼠标的工作原理与驱动程序

  鼠标( mouse) 在现代个人电脑( PC)中被广泛应用,特别是图形用户界面(GUI)的流行,鼠标已经不可或缺。大规模的生产使鼠标的价格很低,通过利用鼠标来测位移也使成本趋于合理。经过数十年的技术发展,尤其是光电鼠标与激光鼠标的出现,其精度得到极大提高。利用鼠标进行位移测定,具有高精度、低成本的优点。鼠标虽然实际上是位移传感器,但其是为PC 机配备的外部输入设备,各种操作系统自带的鼠标驱动程序只是为了提供图形用户界面操作,无法满足普遍的位移测量要求。

  鼠标全称显示系统纵横位置指示器。光电鼠和机械鼠的最大区别是对轨迹的检测方法,但其工作原理基本相同: 通过光栅信号传感器或光电传感器将位移转换为电脉冲信号,然后通过芯片将信号处理为数据包传递给PC 机。目前利用鼠标实现位移测量的方法主要是利用单片机实现信号处理,实现位移检测功能,但此方法稳定性差,噪声较大,需要额外硬件系统,性价比低。在操作系统已经尽可能挖掘了底层硬件数据通信能力的情况下,重新对底层硬件通信浪费资源。实际上,鼠标提供GUI 操作,通过鼠标移动控制显示设备上鼠标指针的像素移动。反之,可以利用指针运动的位移来确定实际鼠标的位移。

  1.2 鼠标坐标系统与显示坐标系统的关系

  鼠标坐标系统( 即实际位移) 与显示坐标系统通过映射来完成对应关系,二者坐标均使用平面直角坐标系。鼠标坐标系统在平面上任意取一点作为原点,以相对原点的偏移量计算目标点的坐标值,然后以相对该目标点的偏移量计算下一新目标点的坐标值,以此类推。鼠标坐标系统中基本单位为米基。显示坐标系统同显示器的实际分辨率及工作方式有关。使用平面直角坐标系,原点在屏幕的左上方,横向代表X 方向,纵向代表Y 方向。图形方式下的横向、纵向的象素为基本单位进行衡量。例如,1024×768 分辨率时,显示坐标的横向和纵向坐标范围为0~ 1023,0~ 767。

  鼠标坐标系到显示坐标系完成三个方面的映射:(1) 原点映射:( x 0 , y 0 ) = ( X 0, Y0 ) , 其中X 0 , Y0 ( 为屏幕原点坐标)值可任意给定:( 2) 目标点映射:( x i , y i ) = ( x i- 1 +△x i , y i- 1 + △yi ) →(X i , Yi ) = X i- 1 + △X i , Yi- 1 + △Yi ( i =1, 2 ……, n, 横向下界≤ X i ≤ 横向上界,纵向下界≤Yi ≤纵向上界; ( 3) 基本单位映射: 在图形方式下( 米基到象素映射) ,△x i / x 方向比例因子= △X i , △yi / y 方向比例因子= △Yi ( i =1, 2……,n)。改变米基到象素的比例因子μ 影响鼠标灵敏度,μ 值决定着指针的移动速度,可以在PC 机w indow s 操作系统中的控制面板设置。因此无须改变鼠标底层的硬件驱动,实际鼠标的位移可以通过象素坐标来确定。但实际的显示坐标均有边界限制,不能满足大范围的位移测量。通过LabVIEW编程消除显示坐标系象素X i 与Yi 的上下界限制,通过测量指针移动的象素来精确检测鼠标的位移量。

  1. 3 位移测量的LabVIEW 实现方法

  通过库函数节点( CLF) 来访问动态链接库( DLL) 的方法,直接调用WINDOWS API 函数与LabVIEW 自行编制的库函数,使得LabVIEW 对鼠标的通信得到大大的增强,同时也为操作系统底层函数支持LabVIEW 提供了便捷,节省了内存空间。与鼠标相关的动态链接库函数如表1 所示,二者库函数有部分相同的功能。

  表1 鼠标驱动程序接口函数

  

表1 鼠标驱动程序接口函数

 

  通过调用以上函数实现鼠标的位移测量。具体方法为: 在显示坐标系内,坐标范围分成M × N 象素。位移的X 、Y 分量二者互不影响,编程时可以分别处理。方法实现的重点是消除操作系统固有的显示坐标系象素X i 与Yi 的上下界限制。首先要判断鼠标的运动方向,若鼠标向左移动,则其必然到达坐标系右边界。这时通过函数使象素X i 置零,Yi 不变,同时记录一次其过边界。通过显示坐标( X i , Yi ) 与初始坐标( X 0 ,Y0 ) 之差与过边界次数即可求出在显示坐标中鼠标指针的位移。其他运动方向的位移同理可以得到。最后通过比例因子μ将显示坐标映射到鼠标坐标系中,即可求出实际位移( x i ,yi ) .详细的程序流程图如图1 所示。

  

图1  鼠标位移测量程序流程图

 

  图1 鼠标位移测量程序流程图

  LabVIEW 具有代码直观、层次清晰的图形化编程特点。在前面板上设置显示坐标为M×N = 500 × 300 的指针工作区域,并设置初始坐标在工作区的中心( 250, 150) .X 方向右位移消除边界的部分程序框图如图2 所示,条件语句判断当指针到达右边界( 499, Yi ) 时,下一次循环将其设为( 0, Yi ) ,并将以后的位移增加1 倍M.循环体内使用了移位寄存器。

  

图2 部分消除边界的LabVIEW 程序框图

 

  图2 部分消除边界的LabVIEW 程序框图

2 检测实验与性能分析

 

  检测实验采用USB 接口的dell 三键光电有线鼠标,最高分辨率400dpi.分别测试了鼠标在指针最小与最大移动速度( 控制面板中设置) 中以4mm/ s 与20mm/ s 的速度进行位移测量性能。采用步进电机与控制器对其进行位移标定,位移精确度为0.01mm.得到如图3 所示位移图像。

  由于步进电机显示位移与鼠标实际检测的位移具有统计关系而且是线性的,故可以建立回归模型: Yi = A + B ?? X i + εi( i= 1, 2, ……, n) , 其中( X i , Yj ) 表示( X , Y) 的第i 个观测值,A 、B 为参数,A + B ×X i 为反映统计关系直线的分量,εi 为反映在统计关系直线周围散布的随机分量,εi ~ N( 0, δ 2 ) , 服从正态分布。根据最小二乘法:

  

 

  

 

  相关系数越接近1, 则二者越正相关。图3 直线拟合的结果如表2.

  表2 线性拟合结果

  

表2  线性拟合结果

 

  

图3  步进电机标定实验及线性拟合

 

  图3 步进电机标定实验及线性拟合

  由表可知,不同条件下两种方法测定的位移相关系数均接近于1, 即实验鼠标位移测定与步进电机标定位移接近相等;截距A 可以忽略不计,即鼠标位移测量没有系统误差; 斜率B 的标准差均小于0.3%, 即实验鼠标随机误差小。以上充分说明实验鼠标在低速的位移测量具有精度高、线性度好、误差小等优点。
 

 
为测试低速条件下鼠标位移测量性能与速度的关系,用相同的标定方法测试了不同速度鼠标位移的性能。由图4 可知总体来看,鼠标移动速度越大,斜率误差与总拟合标准差越大,测量位移性能降低,但在20mm/ s 速度以内仍满足位移测定的一般需求。可以预见随速度的增大,误差将逐渐变大。此鼠标位移测定方法适宜于低速情况。

 

  

图4  不同速度位移测定的误差

 

  图4 不同速度位移测定的误差

  3 总结

  结果显示此方法达到了精确位移测量的要求,可以提供精确度0.1mm 的位移测量,具有线性度好,精确度高,误差小的优点。同时研究显示该位移测量系统在低速的位移测量中具有更佳的性能。采用高层软件设计的方法,使鼠标位移测量不受鼠标接口、鼠标型号的限制,具有高性价比与强适用性的特征。此鼠标位移检测方法集成到基于LabVIEW 的漏磁检测系统中,取得了良好的效果。


关键字:鼠标位移  测量技术 引用地址:一种鼠标位移测量技术研究

上一篇:基于虚拟仪器技术的温湿度无线检测系统
下一篇:LabVIEW及GPIB接口的测试系统开发详解

推荐阅读最新更新时间:2024-03-30 23:26

手机功率辐射和接收机特性测量技术
  手机射频特性测量解决方案包括辐射功率和接收机特性的测量,本文介绍了测试原理和测试系统的组成以及测试过程,同时介绍了在GSM、CDMA等测量中的应用。   在现代网络中,好的辐射特性是手机有效工作的关键。目前手机的尺寸越来越小,出现的经常折衷辐射特性的情况,例如以一个很小的尺寸完成有效的天线并同时覆盖蜂窝和PCS频率是非常困难的。一个全面的精确的辐射特性,可以帮助设计师和制造商确定手机在限制的蜂窝网络设计特性范围内工作。   通常手机的射频指标测量分为接收机和发射机两部分。对于接收机来说,主要通过测量BER或FER来测量接收机的灵敏度(sensitivity),以及RXQual和RXLev等参数。   对于发射机来说主要测
[手机便携]
纳米技术所需的电测量方法— 概述
有广泛且多样化应用的纳米科学技术 ,推动着研究者不断运用碳纳米管 、化学分子、量子点、甚至聚合物研发出新的材料和元器件。对这些纳米尺度的元器件与材料进行的特性测量远非轻而易举,因为其中许多具有低电流、低电阻 、高电阻和低功率等电特性。 这篇文章将深入揭示纳米技术所需的电测量方法,并示出了基于碳纳米管的材料 、电子电路、分子电子学和材料学等方面的示例。文中将探讨影响如此敏感的测量的各类测量不确定性的来源,并对可用的测试设备解决方案进行了讨论。 纳米技术与科学吸引着来自于电子学乃至化学再到生物学的诸多学科领域的研究者,人们正在开发多种多样的潜在应用和产品,这些应用与产品将对多个产业产生重大的影响。无论是传感器 、给药系统、更坚固
[测试测量]
海克斯康江西PC-DMIS测量技术培训会圆满结束
2017年11月海克斯康在江西铃格厂举办PC-DMIS测量技术培训会。海克斯康制造智能技术专家与来自7家用户的20位工程师,在这里度过了充实而温暖的一天。 计量行业圈子里的朋友对PC-DMIS软件应该都不陌生,很多量友为拥有PC-DMIS工程师认证证书而喜悦,我们希望PC-DMIS软件为您的工作带来方便,为您的企业带来价值。为了让PC-DMIS软件的使用者能够更好的使用软件,我们来到江西,为江西的量友答疑解惑。 PC-DMIS软件应用工程师马凌风老师,从最佳拟合建坐标系开始,讲解圆柱,斜圆柱,深孔,形位公差,补偿的算法,我们发现高手在民间,客户问题专业有深度,马老师面对
[其他]
海克斯康江西PC-DMIS<font color='red'>测量</font><font color='red'>技术</font>培训会圆满结束
基于SOC技术的C8051F020处理器实现动平衡测量系统的应用方案
由于旋转件不平衡量离心力的影响,在转动时,中心惯性主轴与回转轴线不重合,所以惯性力矩或惯性力偶矩的大小与方向会随着机械运动的循环而产生周期性变化,从而使得整个机械系统产生振动。由于振动对机械设备的工作精度、寿命等有很大影响,甚至可能损坏设备,所以大部分的旋转件需要做动平衡。 多数的动平衡测量系统的工作环境比较恶劣,周围存在很多其他设备,电磁和机械干扰可能同时存在,所以对测量系统的抗干扰性等要求更高。所以对现有测试系统的改造势在必行。提高系统集成度,减小系统复杂度,提高系统运算能力将有效解决上述问题。在此基础上我们采用了基于SOC技术的C8051F单片机作为系统核心。由于速度快,功能丰富,可以实现A/D转换、数字采集、操作控制、
[单片机]
基于SOC<font color='red'>技术</font>的C8051F020处理器实现动平衡<font color='red'>测量</font>系统的应用方案
基于PIC16F877单片机的井下压力测量技术研究
目前,我国油井主要采用的是电子式井下压力测量系统,由于电子压力传感器长期工作在高温环境中,所以存在漂移问题,而且可靠性不高。同时这种仪器大多数将采集的数据存储在存储器中,缺乏实时性测量的要求。而本文所介绍的井下压力采集系统是一种新型的压力测量系统,其主要是以惰性气体作为压力传递介质,在地面完成对井口气体压力的测量,然后通过井口压力的大小推算井下测压点处压力大小。其主要特点是所有的测量都在地面上进行,避免了井下复杂环境对测量结果造成的影响,同时也满足了系统的实时性要求。 1 井下压力测量系统工作原理 井下测压系统的基本原理是帕斯卡定理。整个套管设备在测压时被下放到井下测压点处,地面可以通过压力泵向传压筒内充放气体,为维持井液与
[单片机]
基于PIC16F877单片机的井下压力<font color='red'>测量</font><font color='red'>技术</font>研究
宽带测量技术白皮书
1.复杂电子系统的发展及其测量需求 典型的复杂电子系统主要有:宽带雷达,捷变频电台,电子对抗,宽带无线通信,卫星通信等系统。 射频微波电路是复杂电子系统的重要组成部分,主要完成发射和接收信号的功率控制和频率搬移,对整个电子系统灵敏度,动态范围等指标有决定性的影响。典型的射频微波电路包含天线,放大器,滤波器,频率合成器,传输线等有源和无源电路。随着系统功能和性能要求的提高,电子系统对这些射频微波电路的要求越来越高,带宽要求越来越宽,很多系统要求500MHz或1GHz以上的带宽。 高速数字电路是复杂电子系统的另一重要组成部分,主要完成复杂信号的生成,复杂信号的处理,大数据量和高速信号的传输,对整个电子系统工作速
[测试测量]
宽带<font color='red'>测量</font><font color='red'>技术</font>白皮书
基于虚拟仪器技术实现电波传播测量系统的设计
1 引言 随着移动用户数日益增长,数据量的需求也呈海量增长,现有的移动通信频段已经无法满足日益增长的宽带移动通信需求。因此,从系统的角度寻找新的、适用于无线通信的频段变得日益迫切。考虑到频段资源、技术设备、运营成本等多方面因素,3.5GHz频段作为国际ITU频谱大会上第四代(4G)移动通信系统IMT-Advanced侯选频段之一,成为了研究的热点频段,基于侯选频段传播模型的研究也提到非常重要的高度,积极推进未来移动通信候选频段研究对于促进我国无线通信自主技术的演进与发展意义重大。 通常,无线传播模型只是客观上反映了进行模型校正地区的电波传播的衰落规律,而事实上,由于各个地区的地形地貌千差万别,利用单一的传播模型已经无法进行统一
[测试测量]
基于虚拟仪器<font color='red'>技术</font>实现电波传播<font color='red'>测量</font>系统的设计
毫米波测量技术及采用高性能混频器的优点
1、介绍 当前最有吸引力的毫米波应用主要在E频段与V频段。E频段对应于60GHz~90GHz的频率范围,在此频段上由于大气衰减的影响只能采取视线传输(LOS)方式。实际上,很多大气中的分子,例如氧气、水蒸气或氮气,可以在这个频段内的特定波长上吸收能量。然而,在实践中,这些频率范围上足够多的可用频谱资源还是驱使着产业来将未来的技术应用到这些频率范围上来。与此类似,V频段对应于40GHz~75GHz,被广泛用于卫星通信。 在这些频段上有3个正在被开发的关键应用,它们是:移动回传、汽车雷达、Wi-Gig(802.11ad)。 第一个应用依赖于这样的事实:当前的超异构网络充满着多个小基站,大幅提高了对回传线路的传输容量的需求。核心网络必须
[测试测量]
毫米波<font color='red'>测量</font><font color='red'>技术</font>及采用高性能混频器的优点
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved