分析影响热电偶测量误差的原因

发布者:脑力驿站最新更新时间:2016-12-27 来源: eefocus关键字:热电偶  测量误差 手机看文章 扫描二维码
随时随地手机看文章

  1、插入深度的影响

  (1)测温点的选择

  热电偶的安装位置,即测温点的选择是最重要的。测温点的位置,对于生产工艺过程而言,一定要具有典型性、代表性,否则将失去测量与控制的意义。

  (2)插入深度

  热电偶插入被测场所时,沿着传感器的长度方向将产生热流。当环境温度低时就会有热损失。致使热电偶与被测对象的温度不一致而产生测温误差。总之,由热传导而引起的误差,与插入深度有关。而插入深度又与保护管材质有关。金属保护管因其导热性能好,其插入深度应该深一些(约为直径的15—20倍),陶瓷材料绝热性能好,可插入浅一些(约为直径的10-15倍)。对于工程测温,其插入深度还与测量对象是静止或流动等状态有关,如流动的液体或高速气流温度的测量,将不受上述限制,插入深度可以浅一些,具体数值应由实验确定。影响热电偶测量误差的主要因素。

  2、响应时间的影响

  接触法测温的基本原理是测温元件要与被测对象达到热平衡。因此,在测温时需要保持一定时间,才能使两者达到热平衡。而保持时间的长短,同测温元件的热响应时间有关。而热响应时间主要取决于传感器的结构及测量条件,差别极大。对于气体介质,尤其是静止气体,至少应保持30min以上才能达到平衡;对于液体而言,最快也要在5min以上。

  对于温度不断变化的被测场所,尤其是瞬间变化过程,全过程仅1秒钟,则要求传感器的响应时间在毫秒级。因此,普通的温度传感器不仅跟不上被测对象的温度变化速度出现滞后,而且也会因达不到热平衡而产生测量误差。最好选择响应快的传感器。对热电偶而言除保护管影响外,热电偶的测量端直径也是其主要因素,即偶丝越细,测量端直径越小,其热响应时间越短。测温元件热响应误差可通过下式确定 [1]。

  Δθ=Δθ0exp(-t/τ) (2—1)

  式中 t—测量时间 S,

  Δθ—在 t 时刻,测温元件引起的误差,K或℃

  Δθ0—“t=0” 时刻,测温元件引起的误差,K或℃

  τ—时间常数 S

  e —自然对数的底(2.718)

  因此,当t=τ时,则Δθ=Δθ0/e 即为0.368,

  如果当t=2τ时,则Δθ=Δθ0/e2 即为0.135。

  当被测对象的温度,以一定的速度α(k/s或℃/s)上升或下降时,经过足够的时间后,所产生的响应误差可用下式表示:

  Δθ∞=-ατ (2—2)

  式中 Δθ∞—经过足够时间后,测温元件引起的误差。

  由式(2—2)可以看出,响应误差与时间常数(τ)成正比。为了提高检定效率许多企业采用自动检定装置,对入厂热电偶进行检定,但是,该装置也并非十分完善。二汽变速箱厂热处理车间就发现如果在400℃点的恒温时间不够,达不到热平衡,就容易发生误判。

  3、热辐射的影响

  插入炉内用于测温的热电偶,将被高温物体发出的热辐射加热。假定炉内气体是透明的,而且,热电偶与炉壁的温差较大时,将因能量交换而产生测温误差。

  在单位时间内,两者交换的辐射能为P,可用下式表示:

  P=σε(Tw4 - Tt4 ) (2—3)

  式中 σ—斯忒藩—波尔兹常数

  ε—发射率

  Tt—热电偶的温度 , K

  Tw—炉壁的温度 , K

  在单位时间内,热电偶同周围的气体(温度为T),通过对流及热传导也将发生热量交换的能量为P′

  P′=αA(T-Tt) (2—4)

  式中 α—热导率

  A— 热电偶的表面积

  在正常状态下,P= P′,其误差为:

  Tt-T=σε(Tt4-Tw4)/αА (2—5)

  对于单位面积而言其误差为

  Tt-T=σε(Tt4-Tw4)/α (2—6)

  因此,为了减少热辐射误差,应增大热传导,并使炉壁温度Tw ,尽可能接近热电偶的温度Tt。另外,在安装时还应注意:

  ① 热电偶安装位置,应尽可能避开从固体发出的热辐射,使其不能辐射到热电偶表面;

  ② 热电偶最好带有热辐射遮蔽套。

  4、热阻抗增加的影响

  在高温下使用的热电偶,如果被测介质为气态,那么保护管表面沉积的灰尘等将烧熔在表面上,使保护管的热阻抗增大;如果被测介质是熔体,在使用过程中将有炉渣沉积,不仅增加了热电偶的响应时间,而且还使指示温度偏低。因此,除了定期检定外,为了减少误差,经常抽检也是必要的。例如,进口铜熔炼炉,不仅安装有连续测温热电偶,还配备消耗型热电偶测温装置,用于及时校准连续测温用热电偶的准确度。


关键字:热电偶  测量误差 引用地址:分析影响热电偶测量误差的原因

上一篇:热电偶的测量误差分析
下一篇:热套式热电偶测量误差分析

推荐阅读最新更新时间:2024-03-30 23:30

电磁流量计测量误差大?问题很可能在这里
总的来说,造成电磁流量计误差的主要影响因素可以分为三类:选型不当,待测液影响和干扰。 选型不当 1.待测液体流速 电磁流量计可测的流速范围一般为0.5~10m/s,经济流速范围为1.5~3m/s。实际使用时要根据待测流量大小及电磁流量计可测流速范围来确定测量管内径。 2.电极及衬里材料选择 电极及衬里材料直接与待测液体接触,应根据待测液体的特性(如腐蚀性、磨蚀性等)及工作温度选择电极及衬里材料,如选择不当,则会造成附着速度快、腐蚀、结垢、磨损、衬里变形等问题,进而产生测量误差。 3.励磁稳定性 电磁流量计的励磁方式有直流励磁、交流正弦波励磁和双频矩形波励磁等,直流励磁容易产生电极极化和直流干扰问题
[测试测量]
电磁流量计<font color='red'>测量误差</font>大?问题很可能在这里
影响热电偶温度传感器测量的几个因素
热电偶是最常用的测温器件之一,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表转换成被测介质的温度。因为热电偶温度传感器具有测量范围宽、精度高以及响应时间快等优点,所以得到广泛的使用。本篇文章主要探讨影响热电偶温度传感器测量的因素,归纳起来,主要有以下几点: 插入深度 热电偶测温点的选择是最重要的。测温点的位置,对于生产工艺过程而言,一定要具有典型性、代表性,否则将失去测量与控制的意义。热电偶插入被测场所时,沿着传感器的长度方向将产生热流。当环境温度低时就会有热损失。致使热电偶温度传感器与被测对象的温度不一致而产生测温误差。总之,由热传导而引起的误差,与插入深度有关。而插入深度又与保护管材质有关。金属保护管因其
[嵌入式]
基于单片机设计的智能测温系统
1 引言 温度在工农业生产中是用的最多的热工量,热电偶作为一种接触式温度传感器由于其结构简单,测温范围宽,精度高等优点,所以在工业温度测量中广泛应用。但在热电偶的使用中,需  解决两方面的问题:一是需对热电偶的冷端进行温度补偿。二是对热电势和温度的非线性处理。本文利用美国MAXIM公司生产的K型温度补偿器MAX6675来实现冷端的温度补偿,用二  次插值的方法对热电势和温度的非线性进行处理,实践证明,该方法精度高、可靠性好。 2 热电偶冷端温度补偿电路 具有冷端补偿的单片K型热电偶放大器与数字转换器MAX6675内部自带冷端温度补偿、线性校正、A/D转换器、热电偶断线检测等功能,它将温度测量值转换为单片机能识别的16  位二进制
[单片机]
基于单片机设计的智能测温系统
热电偶测量误差的原因分析及解决方
热电偶测量误差的原因分析及解决方法   一、热电偶安装不当引起的误差:   1、插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;   2、热电偶冷端太靠近炉体使所测场所温度过高;   3、热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;   4、热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。   二、热电偶绝缘变差引起的误差:   保护管
[测试测量]
基于ARM7智能拆焊、回流焊台控制系统的设计
0 引言 随着电子工业的发展,电子产品越来越多,电路板上元器件的密度越来越大,并且多为贴片式元件。传统的手工焊接,比较适合直插式元件,对于贴片式焊接效果就差强人意,并且效率很低。同样,传统的的拆芯片方式,一般都用热风枪吹,这样也能够达到目的,但周围的小芯片容易被吹移位。基于以上的原因,有必要改变传统的手工焊接方式和用热风枪拆芯片的方式,采用计算机控制红外线加热的自动焊接。 近几年国内逐渐开始使用拆焊台和回流焊,但普遍存在以下问题:(1)控制芯片采用简单的单片机,以“裸奔”为主没嵌操作系统,从而导致系统过于简单或分配不合理。(2)传感器一般都采用热电偶,但不加补偿电路,而且很少在程序中采用算法,这样加热器件往往存在惯性和滞后
[单片机]
基于ARM7智能拆焊、回流焊台控制系统的设计
NI 最新推出高通道密度热电偶数据采集模块
美国国家仪器有限公司(National Instruments,简称NI)近日发布最新NI 9213高通道密度热电偶输入模块,扩展了NI C系列平台的选择。工程师们可以使用NI 9213创建紧凑的模块化数据采集系统,从多达16个独立的热电偶传感器中采集数据。相比测试系统中的标准仪器,NI 9213占据更少的空间,提供更多通道,并且每通道的采样率达到75Hz,使得该模块成为高通道数系统紧凑而高效的选择。 由于C系列平台的灵活性,工程师们可以在新的应用或现有应用中使用NI 9213。与其他C系列模块相似,NI 9213可以与NI USB-9162模块或NI CompactDAQ八槽机箱部署在一起,组建快速测量桌面
[测试测量]
NI 最新推出高通道密度<font color='red'>热电偶</font>数据采集模块
电磁流量计测量误差分析
现在科技迅速在发展当中,本文我们为大家深入讲解电磁流量计测量误差分析的应用场合和电磁流量计测量误差分析与目前国内其他产品相比的优势,希望对大家有所帮助。 电磁流量计属于速度流量计的一种, 它利用导电流体在磁场中流动产生的感应电动势推算出流体流量, 可以说电磁流量计的准确与否和能源的合理、有效的利用、贸易的结算息息相关, 因此其计量误差便成了一个非常重要的问题。 一、电磁流量计的原理.. 电磁流量计是利用法拉第电磁感应定律制成的一种测量导电液体体积流量的仪表。基本原理是法拉第电磁感应定律, 即导体在磁场中切割磁力线运动时在其两端产生感应电动势,当然, 上式成立是在一定的严格条件下的磁场分布均匀的恒定磁场.. 被测流体的流速轴对称
[测试测量]
电磁流量计<font color='red'>测量误差</font>分析
测量误差的分类
  由于各种客观及主观原因,任何测量过程必然存在误差,根据测量误差的性质及产生的原因,测量误差分为以下三类。   (1)系统误差 在同一条件下,多次重复测量同一量时,误差的大小和符号保持不变或按一定规律变化的这种误差称为系统误差。系统误差主要是由于检测装置本身在使用中变形、未调到理想状态、电源电压下降等原因造成的有规律的误差。一般可通过实验或分析的方法查明其产生的原因,因此,它是可以预测的,也是可以消除的。系统误差的大小表明测量结果的准确度。系统误差来源于传感器误差、放大器和传输线等器件的非线性误差、数据采集系统误差、数学模型误差及校准定标误差等。   (2)随机误差 在同一条件下,多次重复测量同一量时,误差的大小、符号均呈无规律
[测试测量]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved