示波器怎么测电流_示波器测直流电压_示波器测量电源纹波

发布者:Lihua521最新更新时间:2019-12-06 来源: elecfans关键字:示波器  电流  直流电压  电源纹波 手机看文章 扫描二维码
随时随地手机看文章

示波器测电压的方法有哪些?示波器(虚拟示波器)可以观察到各种不同信号幅度随时间变化的波形曲线,同时还能测量各种不同的电量,比如电压、电流等等。示波器(数字示波器)的显示电路包括示波管及其控制电路两部分,我们上篇讲到其中示波管是一种特殊的电子管,由电子枪、荧光屏和偏转系统3部分组成,是示波器的重要组成部分(示波器的作用是什么_示波器简单原理_示波器触发方式)。利用示波器所作的任何测量都可以看做对电压的测量,本篇讲的是怎么用示波器来测电流、电压和电源纹波。希望可以帮助到大家!


对于直流电流或交流电流的测量,一般是用间接法进行的。具体方法是:

1、首先将电流量变换为一成正比例的电压量。

2、然后用示波器观察,一般测试方法为:

在被测电路中串接一只精度高、阻值小的无感电阻,然后用示波器测量电压的方法,测出该电阻两端的电压有效值,再计算出实测的电流值,其计算式为

I=U/R

式中 I-实测的电流值,A;

U-串接电阻两端的电压有效值,V;

R-串接的无感电阻的电阻值,Ω。

示波器怎么测电流_示波器测直流电压_示波器测量电源纹波

示波器怎么测电流_示波器测直流电压_示波器测量电源纹波


读出此时荧光屏上的水平亮线与零电压线之间的垂直距离y,将y乘以示波器的垂直灵敏度Sy即可得到被测电压ux的大小,即ux=Sy&TImes;y。

含交流成分的直流电压的测量

1、由于磁电式表头的偏转系统对电流有平均作用,不能反映纯交流量,所以,含交流成分的直流电压的一种常用测量方法就是用模拟式电压表直流档测量。

2、如果叠加在直流电压上的交流成分具有周期性和幅度对称性,可直接用模拟式电压表测量其直流电压的大小。

3、由交流信号转换而得到的直流,如整流滤波后得到的直流平均值,以及非简谐波的平均直流分量都可用模拟式电压表测量。

4、不能用数字式万用表测量含有交流成分的直流电压,因为数字式直流电压表要求被测直流电压稳定,才能显示数字,否则数字将跳变不停。


以20M示波器带宽为限制标准,电压设为PK-PK(也有测有效值的),去除示波器控头上的夹子与地线(因为这个本身的夹子与地线会形成环路,像一个天线接收杂讯,引入一些不必要的杂讯),使用接地环(不使用接地环也可以,不过要考虑其产生的误差),在探头上并联一个10UF电解电容与一个0.1UF瓷片电容,用示波器的探针直接进行测试;如果示波器探头不是直接接触输出点,应该用双绞线,或者50Ω同轴电缆方式测量。


开关电源输出纹波主要来源于五个方面:输入低频纹波;高频纹波;寄生参数引起的共模纹波噪声;功率器件开关过程中产生的超高频谐振噪声;闭环调节控制引起的纹波噪声。

纹波是叠加在直流信号上的交流干扰信号,是电源测试中的一个很重要的标准。尤其是作特殊用途的电源,如激光器电源,纹波则是其致命要害之一。所以,电源纹波的测试就显得极为重要。


电源纹波的测量方法大致分为两种:一种是电压信号测量法;另一钟是电流信号测量法。

一般对于恒压源或纹波性能要求不大的恒流源,都可以用电压信号测量法。而对于纹波性能要求高的恒流源则最好用电流信号测量法。


电压信号测量纹波是指,用示波器测量叠加在直流电压信号上的交流纹波电压信号。对于恒压源,测试可以直接用电压探头测量输出到负载上的电压信号。对于恒流源的测试,则一般是通过使用电压探头,测量采样电阻两端的电压波形。整个测试过程中,示波器的设置是能否采样到真实信号的关键。


所用的仪器是:配有电压测量探头的TDS1012B示波器。


测量之前需要进行如下设置。


1、通道设置:

耦合:即通道耦合方式的选择。纹波是叠加在直流信号上的交流信号,所以,我们要测试纹波信号就可以去掉直流信号,直接测量所叠加的交流信号就好。


宽带限制:关

探头:首先选用电压探头的方式。然后选择探头的衰减比例。必须与实际所用探头的衰减比例保持一致,这样从示波器所读取数才是真实的数据。比如,所用电压探头放在&TImes;10档,则此时,这里的探头的选项也必须设置为&TImes;10档。


2、触发设置:

类型:边沿

信源:实际所选择的通道,如,准备用CH1通道进行测试,则此处就应该选择为CH1。

斜率:上升。


触发方式:如果是在实时地观察纹波信号,则选择‘自动’触发。示波器会自动跟随实际所测信号的变化,并显示。这个时候,你也可通过设置测量按钮,实时地显示你所需要的测量的数值。但是,如果你想要捕捉某次测量时的信号波形,则需要将触发方式设置为‘正常’触发。此时,还需要设置触发电平的大小。一般当你知道你所测量的信号峰值时,将触发电平设置为所测信号峰值的1/3处。如果不知道,则触发电平可以设置的稍微小一些。


耦合:直流或交流…,一般用交流耦合。


3、采样长度(秒/格):

采样长度的设置决定能否采样到所需要的数据。当所设置的采样长度过大时,就会漏掉实际信号中的高频成分;当所设置的采样长度过小时,就只能看到所测实际信号的局部,同样无法得到真实的实际信号。所以,在实际测量时,需来回旋转按钮,仔细观察,直到所显示波形是真实的完整的波形。


4、采样方式:

可根据实际需要设定。如,要求测量纹波的P-P值,则最好选择峰值测量法。采样次数也可根据实际需要设定,这与采样频率及采样长度有关。


5、测量:

通过选择对应通道的峰值测量,示波器就可以帮你把所需要的数据及时显示出来。同时也可以选择对应通道的频率、最大值、均方根值等。

通过对示波器进行合理设置和规范的操作,一定可以得到所需的纹波信号。但是,在测量过程中一定要注意防止其它信号对于示波器探头自身的干扰,以免所测量的信号不够真实。


通过电流信号测量法测量纹波值是指,测量叠加在直流电流信号上的交流纹波电流信号。对于纹波指标要求比较高的恒流源,即要求纹波比较小的恒流源,采用电流信号直接测量法可以得到更加真实纹波信号。与电压测量法不同的是,这里还用到了电流探头。比如,继续用上述的示波器,再加一个电流放大器和一个电流探头。此时,只需用电流探头夹住输出到负载的电流信号,就可以进行电流测量法来测量输出电流的纹波信号了。与电压测量法一样,整个测试过程中,示波器及电流放大器的设置是能否采样到真实信号的关键。


其实,用这种方法测量时,示波器的基本设置及用法与上述相同。不同的是,通道设置中探头的设置有所不同。在这里,需要选则电流探头的方式。然后,选择探头的比例,必须与放大器所设置的这个比例相同,这样从示波器所读取数才是真实的数据。比如,所用放大器的这个比例设置为5A/V,则此时示波器的这一项也需设置为5A/V。至于电流放大器的耦合方式,当示波器的通道耦合已经选择为交流耦合时,则这里选择交流或直流都可以。

需要注意的是,用这种方法时,需先打开示波器,然后再打开电流放大器。且记得在使用前对电流探头先消磁。


另外,测量电源纹波本身有一定技巧性。不当使用示波器测量电源纹波首先是使用了接地线很长的示波器探针;其二是让由探针和接地线形成的回路靠近功率变压器和开关元件;最后是允许在示波器探针和输出电容之间形成额外的电感。其结果带来的问题是在测得的纹波波形中携带了拾取的高频成分。


在电源中有许多很容易耦合到探针中的高速的、大电压和电流信号波形,其中包括来自功率变压器的磁场耦合、来自开关节点的电场耦合、以及由变压器交绕(interwinding)电容产生的共模电流。


采用正确的测量技术可切实改善纹波测量的结果。首先,通常会规定纹波的带宽上限,以避免拾取超出纹波带宽上限的高频噪声,应该给用于测量的示波器设定合适的带宽上限。其次,可以通过摘掉探针的“帽子”来去掉接地长引线形成的天线。我们把一段短线绕在探针接地引线周围,并使之与电源地相连接。这样做附带的好处是缩短暴露在电源附近高强度电磁辐射中的探针长度,从而进一步减少高频拾取。


最后,在隔离电源中,真正的共模电流是由在探针接地引线中流动的电流产生的,这就使得在电源地和示波器地之间产生电压降,表现为纹波。要抑制这个纹波,需要在电源设计中仔细考虑共模滤波问题。


此外,把把示波器引线绕在铁芯上可减小这个电流,因为这样会形成一个不影响差分电压测量、但可降低由共模电流产生的测量误差的共模电感。可以看到,高频尖刺已几乎消除。


事实上,当电源集成到系统中之后,电源纹波性能甚至会更好。在电源和系统其它部分之间几乎总会存在一定量的电感。电感可能是由导线或在印刷线路板上的蚀刻线形成的,而在芯片附近总会有作为电源负载的附加旁路电容,这两者形成低通滤波效应并进一步降低电源纹波和/或高频噪声。


举一个极端的例子,由电感量为15nH的长一英寸的短线和电容量10μF的旁路电容构成的滤波器,其截止频率为400kHz。该实例意味着能大幅减少高频噪声。该滤波器的截止频率比电源纹波频率低很多倍,可以切实降低纹波。聪明的工程师应该在测试过程中设法利用它。

关键字:示波器  电流  直流电压  电源纹波 引用地址:示波器怎么测电流_示波器测直流电压_示波器测量电源纹波

上一篇:示波器波形分析之示波器波形粗细属性详解
下一篇:技术文章—使用FlexChannel应对多总线系统调试

推荐阅读最新更新时间:2024-11-11 18:08

浅懂示波器FFT快速傅立叶变换功能及运用
大多数示波器上都有个FFT功能,也叫快速傅立叶变换,但很多人不了解这个功能是做什么用的,百度以后又会遇到各种各样的高数公式,看的一头雾水,遂而放弃这块知识。 我们来看百度百科的解释: FFT,即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。 这一看,头都大了。 今天我们就带大家简单的了解下什么是傅里叶变换以及它的功能作用。 本文不会涉及任何数学公式,目的只在让大家能理解傅里叶变换表达的是什么,至于怎么来的,我们不管。 理解傅立叶变换基本原理: 傅立叶变换认为,任何复杂的信号都是由多个正余弦波叠加而来的。 比如这个红色信号,我们就可以看作是多个蓝色
[测试测量]
浅懂<font color='red'>示波器</font>FFT快速傅立叶变换功能及运用
电流互感器
电流互感器是依据电磁感应原理将一次侧大电流转换成二次侧小电流来测量的仪器。电流互感器是由闭合的铁心和 绕组 组成。它的 一次侧 绕组匝数很少,串在需要测量的电流的线路中。 因此它经常有线路的全部电流流过,二次侧绕组匝数比较多,串接在测量仪表和保护回路中,电流互感器在工作时,它的二次侧回路始终是闭合的,因此测量仪表和保护回路串联线圈的阻抗很小,电流互感器的工作状态接近短路。电流互感器是把一次侧大电流转换成二次侧小电流来测量,二次侧不可开路。词条介绍了其工作原理、参数说明、分类、使用介绍等。 基本概念 电流互感器原理是依据电磁感应原理的。电流互感器是由闭合的铁心和绕组组成。它的一次绕组匝数很少,串在需要测量的电流的线
[测试测量]
如何用电流互感器对高频脉冲电流进行有效测量
  高频脉冲电流互感器是一米无源的非接触式电流探头,专用于快变的交流电流测试,包括瞬态电流、谐波电流、高脉冲、正弦波、RF射频电流,以及其他复杂电流波形的测试。   高频脉冲电流互感器通常采用特种材料的铁芯,以及特殊的退火工艺和精密的绕线加工,实现不同应用领域的各种暂态电流的测试与量。   一、关于脉冲电流互感器   脉冲电流互感器是根据电磁感应原理,使被测电缆穿过空心线圈,当被测线缆的电流发生变化时,其周围产生的磁场也会发生变化,同时,空心线圈的磁通量产生变化,磁通量的变化就会使次级回路(互感器线圈)产生电流。   这样,就可以根据互感器的电信号测量出被测电绩的电流大小。脉冲电流互感器主要用干测量交流电流,高脉冲电流等。   二
[测试测量]
如何用<font color='red'>电流</font>互感器对高频脉冲<font color='red'>电流</font>进行有效测量
电机测试中启动电流详解
一、什么是启动电流 启动电流是指电器设备( 感性负载 )在刚启动时的冲击电流,是电机或感性负载通电瞬间到运行平稳的短暂时间内的电流变化量,这个电流一般是额定电流的4-7倍,国家规定,为了线路的运行安全及其它电气设备的正常运行,大功率的发动机必须加装启动设备,以降低启动电流。 图 1 启动电流 电流-转速 二、启动电流特点 一般不同类型的电机具有不同的启动电流特点,比如:鼠笼式异步电机启动启动电流一般是4~7倍,但是不是绝对的。不过一般要求电机的起动电流不能超过其额定电流的2~5倍。电机功率超过30kw的电动机不适合频繁启动,因为30kw以上电机启动电流一般为额定电流的6-7倍,频繁启动会增加电机温升,造成烧毁电机的
[测试测量]
电机测试中启动<font color='red'>电流</font>详解
示波器八大常见问题处理方法全面揭秘
伴随着计算机、半导体和通信技术的发展,一直是我们设计、调试产品好帮手的示波器在电子方面的应用也就越来越广泛,那对于示波器的使用中如果要想准确快速地对系统信号进行分析,那在测量时还有很多新的因素是必须要考虑的:例如仪器速度能否跟上被测信号的变化、带宽是否足够、测量方法会不会引入干扰,甚至还有所使用的 探头 是否合适等等。这些都是示波器使用中常见的一些问题,那我们碰到这些问题的时候该如何处理呢?下面就来给大家说示波器常见问题的处理: 问题1:在选择示波器时,一般考虑最多的是带宽,那么在什么情况下要对采样速率有所考虑呢? 答:带宽是取决于被测对象的。在带宽满足的前提下,希望最小采样间隔(采样率的倒数)能够捕捉到您需要的信号细节。业界有
[测试测量]
泰克混合信号示波器使用教程
泰克的 MSO/DPO2000B 混合信号示波器系列支持高达 200 MHz 的带宽、1 GS/s 的取样速率,以入门级价格提供了先进的调试功能。其拥有多达 20 条通道用于分析模拟和数字信号,查找和诊断复杂设计中的问题十分迅速。MSO/DPO2000B 在所有通道上标配 1M 点的深记录长度,可以捕获长信号活动窗口,同时保持精细的定时分辨率。 示波器是一种广泛使用的电子测量仪器。据统计,全球大约80%的工程师都在使用泰克示波器,它能将看不见的电信号转化为看得见的图像,便于人们研究各种电现象的变化过程。那么,如何正确使用示波器呢?本文姜维我们进行介绍 首先要将探头和示波器进行链接。探头的电阻要和主机的接口电阻一样,这样才能
[测试测量]
Littelfuse锂离子电池保护器可防治设备过电流和过充电
全球领先的电路保护、功率控制和传感技术制造商Littelfuse, Inc. (NASDAQ: LFUS)今日宣布推出ITV系列三端子表面贴装锂离子电池保护器,该系列产品旨在防止过电流和过充电造成的损坏。 创新的设计可实现快速响应,提供可靠性能,可在电池组过充电或过热之前中断充电或为电路放电。 ITV系列表面贴装锂离子电池保护器 Littelfuse ITV系列产品提供5种紧凑型表面贴装封装,其额定电流为12A、15A、30A和45A。 “ITV系列是我们锂离子电池保护产品系列的重要补充,适合需要12A至45A额定电流的客户应用。”Littelfuse全球产品经理Stephen Li表示。 “其作用机制是:当发生
[电源管理]
Littelfuse锂离子电池保护器可防治设备过<font color='red'>电流</font>和过充电
示波器电源测试的几个步骤
  过去大家习惯用万用表进行电源测试,如果测试参数很多的时候非常麻烦。而现在使用示波器提供了许多自动测量功能,可以使用这些功能简单实现幅度测量(幅度、高、低、最大值、最小值、RMS、峰到峰值、正/ 负过冲、平均值、周期平均值、周期RMS)、定时测量(周期、频率、上升/ 下降时间、正/ 负占空比、正/ 负脉宽、突发宽度、延迟、相位)、综合测量。在实践中,很多工程师对于利用示波器进行电源测试的要点并不是很清楚,这里零星总结一些步骤和要点供大家参考。(这里的陈述是根据本人所使用的泰克混合信号示波器MSO4000系列(MSO4034)以及泰克的探头配置,不同示波器和探头会有些差异)   选择示波器的几个要点   1. 记录长度及分析工具
[电源管理]
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved