为什么示波器波形放大之后会有锯齿?

发布者:梦幻微笑最新更新时间:2020-01-03 来源: elecfans关键字:示波器  波形放大  锯齿 手机看文章 扫描二维码
随时随地手机看文章

常用示波器的工程师都会发现一个现象,当示波器停止采样时,将原来的波形垂直放大后会存在锯齿状,这是什么原因呢?这里跟跟大家一起剖析一下。

一、台阶波形

本文以ZDS4054Plus示波器为测试工具,图 1 如所示波形是在 200mv/div 档位下采样的,波形相对平稳。停止采样后,如果将垂直档位调至 50mv/div,则波形出呈现严重的锯齿状,如图 2 所示。为此很多人感到疑惑,为什么会出现这种现象?

图1 原信号波形

图2 放大后波形

二、原因阐述

1、运行状态下

当示波器处于【Run】时,示波器模拟前端会根据不同的垂直档位,始终会将信号的幅度调理到 ADC合适的范围内,再进行量化,所以运行状态下的波形放大,不会存在锯齿现象。

· 在 200mv/div 的档位下,垂直分辨率(25 LSB/div)为 8mv

· 在 50mv/div 的档位下,垂直分辨率(25 LSB/div)为 2mv

垂直档位越小,分辨率越高,则采集到的波形测量精度就越高,这个就是推荐波形尽量铺满格子的原因。


2、停止状态下

在停止状态下波形不进行采集,也就是停止状态无论垂直档位怎么变化,仍然会保持停止时(200mv/div)的垂直精度 8mv,所以当把波形的垂直方向放大 4 倍时(50mv/div),那么采样点与采样点之间的垂直距离就会变大,当然这仅仅只是进行数字化放大,示波器此时会进行插值保持,插值保持下波形会以阶梯的形式连接,这也是产生锯齿的原因。

图3 插值保持

三、理解误区:插值保持与插值算法有关么?

前面我们提到了插值保持,那么有的工程师可能就会想到,会不会是由于插值算法的原因导致了波形放大后出现了锯齿状呢?毕竟线性插值是以点的方式连接,出现锯齿状也很正常。答案是否定的,下面从原理层来分析一下。


首先解释一下何谓插值算法,对于很多示波器都会有不同的插值模式,常见的分为正弦插值和线性插值,在实际使用过程中,如果示波器ADC的采样率不足以恢复真实信号,我们需选择不同的插值方式进行测试分析:


1、正弦插值

正弦内插是示波器默认的插值方式,也是最常用的插值方式。通过正弦内插的方式,能够比较准确和平滑地还原真实波形信号。利用曲线来连接样点,通用性更强。这种方法弯曲信号波形,使之产生比纯方波和脉冲更为现实的普通波形。如图4所示为采样正弦插值的方式,观察到的放大后的波形。

图4 正弦插值


2、线性插值

线性内插是最简单的插值方式,计算量最小。在ADC的相邻采样数据点之间按照线性多项式的计算方式插入一个计算值,插入的这个点为相邻两个采样点连线上的值。如下图5所示位采用线性内插方式测试波形,是通过点与点之间的直接连接形成的波形,细节上能够看到类似于锯齿波的形状,这种插值方式局限于直边缘的信号。

图5 线性插值

通过这两种插值方式对比,大家会发现正弦内插利用曲线连接采样点,线性内插通过点与点之间的连接形成波形,大家可能会倾向于线性插值的原因形成了放大之后的锯齿状。需要注意的是:插值算法是在ADC采样时进行的,当采样停止后,示波器才会进行插值保持,插值保持下采样点之间会以阶梯的形式连接,因此示波器停止下的放大只是单纯的数字化放大,是示波器插值保持的结果,这与使用何种插值算法完全无关。

四、总结

因此无论前面采用的是何种插值方式,采样停止后放大的波形都会以锯齿状呈现出来,这是插值保持的原因,也是完全正常的。因此,我们在观测波形的时候一定要让波形尽量铺满整个屏幕,如果波形出现了锯齿,也要清楚锯齿的原因来自于哪里。

关键字:示波器  波形放大  锯齿 引用地址:为什么示波器波形放大之后会有锯齿?

上一篇:商用示波器制作技巧全分享
下一篇:测定示波器的电压竖直灵敏度

推荐阅读最新更新时间:2024-11-17 05:14

示波器测量汽车锆氧带加热器氧传感器信号
上一次我们讲了用示波器测量汽车空气流量计的信号,这次我们来讲讲示波器测量汽车氧传感器。氧传感器也叫λ(Lambda)传感器,和空气流量计传感器相比,虽然都对喷油量有影响,但是作用还是不同的。 空气流量计主要是控制检测汽车发动机进气量的,发动机电脑主要根据这个信号来计算得出喷油量的多少,是主要的喷油量计算信号。而氧传感器是用来检查喷油器喷油之后的结果的,是喷多了还是喷少了,如果是喷多了,那么电脑会根据这个信号重新将喷油量减少,如果喷少了,电脑就会增加喷油量,主要是为了降低发动机的排放,防止发动机过度污染。 汽车上的氧传感器一般分锆氧和钛氧的,二氧化锆氧传感器是通过电压变化反映可燃混合气浓度的变化,二氧化钛氧传感器则是通过电阻
[测试测量]
示波器测量电源噪声的3种方法
方法1:使用频域分析 FFT分析能更深入的分析信号,如图5和6所示。在广阔的“白”噪声的基础上明显多了2个峰值,49.5MHz和500MHz。 FFT能快速深入的分析噪声的来源。例如,系统中有33KHz的开关电源和500MHz的时钟,你可以在33KHz和500MHz的地方看到毛刺。毛刺的幅度能让你粗略的了解一下各个噪声源的贡献有多大。 另外可以通过对FFT取平均提高毛刺的能见度。平均的方法会很大程度的消除真随机噪声,能在噪声中甄别出微小的信号。 方法2:使用触发来观察和测量信号 如果能够以除随机噪声源之外的信号作为触发并使用平均,那么所有和此信号不相关的噪声元素都会被减小或者消除。图7和图8展示了这种方法。在图7中
[测试测量]
用<font color='red'>示波器</font>测量电源噪声的3种方法
简单双通道示波器VI的运行操作
  运行简单双通道示波器Ⅵ控件,可以通过以下步骤进行操作。通过这些操作步骤及过程,可以对本章创建的简单双通道示波器Ⅵ控件的主要功能进行测试、调节和使用。    第1步:单击LabVIEW 8.2运行按钮,运行简单双通道示波器Ⅵ控件。    第2步:调节该简单示波器的一些主要选择开关及旋钮,可以测试该示波器的主要功能。调节该简单双通道示波器Ⅵ的触发器选项并选择触发源(Source)开关,可以实现通道B(CH B)触发或外触发(EXT 选择触发沿(Slope)开关,可以实现正触发(POS)或负触发(NEG );同时,可以通过旋钮调节设定触发电平(Level)。    第3步:选择通道(CHANNEL)开关,可以选择通道A信号显示、通
[测试测量]
示波器实操特辑之11:智能词典
  近期,有许多热心的用户建议我们将示波器的按钮改成中文,这样可以进一步降低学习成本,其实,在ZDS2022示波器的系统中隐藏着一个贴心的功能可以解决这个问题,下面我们来举两个例子。   我们为ZDS2022示波器操作面板上的每一个按键都设置了 注释 ,当您不知道操作面板上的某个按键的功能时,只需要长按这个按键,系统就会弹出窗口为您讲解。   ZDS2022示波器具有51种参数测量统计功能,其中有些参数的概念您可能不是很熟悉,此时您只需旋转旋钮B选中某参数,然后长按B旋钮,屏幕上就会弹出一个帮助信息框,信息帮助框包含了这个参数的概念以及计算公式。   ZDS2022示波器就是一本智能词典,从用户感受出发,每个按键、菜单、参数
[测试测量]
<font color='red'>示波器</font>实操特辑之11:智能词典
电源噪声测试中示波器的量化误差
示波器是一种常用的电子测量仪器,它可以把肉眼看不见的电信号转换为可见的图像,以便于人们研究电现象的变化构成。示波器的作用是非常广泛的,还可以使用示波器经行噪声测试,那么具体的测试方法是什么呢? 在电源噪声测试中,示波器的量化误差会导致测量不准确。示波器存在量化误差,实时示波器的ADC为8位,把模拟信号转化为2的8次方(即256个)量化的级别,当显示的波形只占屏幕很小一部分时,则增大了量化的间隔,减小了精度,准确的测量需要调节示波器的垂直刻度(必要时使用可变增益),尽量让波形占满屏幕,充分利用ADC的垂直动态范围。 通常测量电源噪声,使用有源或者无源探头,探测某芯片的电源引脚和地引脚,然后示波器设置为长余辉模式,最后用两个水平游标
[测试测量]
泰克示波器SPC校准步骤详解
所有电子测量类仪器使用一定时间段后就需要自检自校准,就像手机一样,如果不定期进行清理内存或者升级,手机就会出现卡机的情况,定期对仪器进行维护与保养,不仅能够延长仪器的使用寿命,还能让你在操作时更得心应手。示波器在工程师日常使用频率中算是比较高的一种电子测量仪器了,那么泰克示波器该如何自检呢? 下面由安泰测试分享泰克示波器自检的步骤: 第一步 :卸下示波器的所有探头、转换器以及信号连接。 第二步:打开示波器,热机一刻钟左右。通常温差会影响示波器自校。 第三步:选择主界面菜单进入Utilities,打开二级菜单。 第四步:进入第三步的二级菜单点击“Instrument Calibration”或者类似名字的按钮。
[测试测量]
泰克<font color='red'>示波器</font>SPC校准步骤详解
LabVIEW串口通信的一个例子-串口"示波器"
很早就想做一个类似的东西了,正好这学期学了LabVIEW,作业就交了这个,基于LabVIEW的 串口示波器 上位机。 1.程序界面: 功能介绍:左边上方串口接收区,下方为串口字符发送区。右方为一个波形图表,在程序内部每次将串口发送过来的数据,以f%格式化,显示在波形图表上。 按钮介绍:从左至右依次,发送按钮;清除计数按钮;打开/关闭串口按钮;清除接收区数据;清除波形图表;保存波形;退出程序。 2.主程序框图: 主程序框图介绍:主程序框图主要由3个状态组成:程序的初始化,程序事件的响应,程序的退出。 状态Init:程序初始化,主要把OpenCom等按钮,串口状态,串口接收字符串,波形图标,TX/RX计数等控件,置为
[测试测量]
LabVIEW串口通信的一个例子-串口示波器"" />
如何避免检测到来自探头外壳电流的信号
  示波器探头都有两根导线,一根用于连接测试电路与示波器的垂直放大器(称为传感线)另一根用于连接示波器机壳地和本地电路的数字逻辑地(称为屏蔽线)。通常,我们只需要考虑示波器对传感线电压的响应。这一节里分析示波器对屏蔽线上的信号是如何响应的。   示波器的机壳地和逻辑地之间的任何电压差都可以在屏蔽线中引起电流。在图3.17中,通过屏蔽线电阻R屏蔽的屏蔽线电流产生了压降V屏蔽。探头电缆的中心导体,也就是传感线,没有传导屏蔽电流,因此它上面并没有压降。   当传感线和屏蔽线都连接到工作电路的地时,两条线上的不同压降会在示波器的垂直放大器上反映两者的电压差。我们无从知道这个电压差是由探头电缆远端的实际信号产生的,还是由屏蔽电流产生
[测试测量]
如何避免检测到来自探头外壳电流的信号
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved