基于FPGA的伽玛能谱的峰值测量

发布者:快乐旅途最新更新时间:2020-03-03 来源: elecfans关键字:FPGA  伽玛能谱  峰值测量 手机看文章 扫描二维码
随时随地手机看文章

在石油测井行业中伽玛能谱的测量是一种很重要的测井方式,本文结合脉冲中子能谱测量,对伽玛脉冲峰值检测做了研究,利用微分、延时电路及FPGA器件,能很好地检测到伽玛信号的峰值,由实验结果可知,峰值检测的线性度基本满足能谱测量的需求。


0引言

石油作为一种战略资源,越来越受到世界各国的重视;但石油又是一种不可再生的能源,随着世界经济的不断发展,对石油的需求量也越来越大。因此为了科学合理地开采有限的石油资源,人们发明各种各样的测井方法,其中非弹、俘获及活化等能谱测量已成为测井的一个重要分支,这些参数能反映油田剩余油和残余油饱和度等指标,要想得到好的能谱,首先必须要有好的峰值检测及保持电路,本文主要针对能谱数据测量过程中的峰值检测及保持部分作了分析,利用微分及延时电路和Verilog语言实现了伽玛信号的峰值检测和保持,为能谱采集提供了—个好的解决方案。


1伽玛信号的获取

任何信号的获取都是要经过传感器的,伽玛信号的传感器我们称之为伽玛信号探测器,主要是由闪烁体、光电倍增管及高压电源组成,目前常用的闪烁体有溴化镧、BGO和碘化钠等,文中选取碘化钠晶体与光电倍增管及高压电源组成的探测器来获取伽玛信号。

基于FPGA的伽玛能谱的峰值测量

如图1,当伽玛射线打到闪烁体上,闪烁体会产生光子,这些光子通过光导介质送达光电倍增管处,在高压电源的作用下,光电信号在一步一步增强,最终形成如图1的A处的一个负的伽玛电信号,这个信号经过前放电路调整成我们需要的脉宽和幅度信号后即可进行峰值检测的处理。


2伽玛信号的调理

得到了负伽玛信号的后,首先我们要对其进行调理,得到我们想要的脉宽和幅度信号,如图2,首先经过反向放大器,在反向放大的同时对信号进行小幅度的积分处理,把信号脉宽展宽至1.5μs左右。对于信号放大的幅度则是由我们要测量的能量及ADC器件的输入范围决定的。文中测量的伽玛射线的能量是0.8 MeV~10 MeV,ADC输入为0~8 V,因此可以将整个测量的能量区域转换成电压信号,即为0.64 V~8 V,要做到精确地调整放大倍数要用铯源来标定,这不是文中重点,这里就不做过多介绍了。当信号放大倍数调整完成后,由于信号的堆积或是运放参数的不稳定,会出现信号偏离基线的现象,因此我们电路采用了有源的双二极管基线恢复方法,使得信号的起始位置总在零电平的位置,为测能谱数据奠定了基础。

基于FPGA的伽玛能谱的峰值测量

关键字:FPGA  伽玛能谱  峰值测量 引用地址:基于FPGA的伽玛能谱的峰值测量

上一篇:七电极电导率传感器原理及测量电路分析
下一篇:罗德与施瓦茨联合Decawave开发UWB技术测试与测量解决方案

推荐阅读最新更新时间:2024-11-01 22:38

超声诊断仪FPGA模拟动态滤波器的原理及应用
超声成像是当今 医学影像 诊断的主要成像方法之一,它以超声波与生物之间的相互作用作为成像基础,具有对人体无伤害、无电离辐射、使用方便、适用范围广、设备价格低等优点。为了让超声图像能够更加清晰,现代 超声诊断仪 对超声信号进行动态滤波。动态滤波包含模拟动态滤波和数字动态滤波。模拟 动态滤波器 要改变器件的参数,从而达到改变通频带中心频率的效果,方法简易,效果很好。同时,控制信号是来自 FPGA 输送出的数字信号,经D/A转换所得,采用 FPGA 实现控制信号,实现了很高的精度,达到了预想的效果。 选用 CycloneⅢ EP3C16Q240C8 在FPGA 内实现数字电路,工作频率高,同时各个模块并行工
[嵌入式]
超声诊断仪<font color='red'>FPGA</font>模拟动态滤波器的原理及应用
如何保护FPGA输入端的齐纳二极管
虽然5V电源逻辑在很多应用中仍很常见,但大多数FPGA都支持3.3V以及更低的接口电平。FPGA应用说明通常建议,当把一只FPGA连接到较高电压电平时,FPGA的I/O块中要用PCI(外设部件互连)总线箝位二极管,并外接一只串联限流电阻,以防止损坏FPGA(图1)。PCI箝位二极管会将电压限制在不致损坏输入端的电平,而电阻则将电流限制在一个不会损害PCI箝位二极管的安全水平。这种方案在低速信号的设计中工作良好。      不过,当将此方案用于较高速率信号时,寄生RC滤波器的效应就会使信号失真(图2)。FPGA应用说明中的电路需要做个变动,无需重新设计PCB(印刷电路板)就可以完成这个变动。本例用一只齐纳二极管替代了
[工业控制]
如何保护<font color='red'>FPGA</font>输入端的齐纳二极管
SDRAM通用控制器的FPGA模块化设计
       引言        同步动态随机存储器(SDRAM),在同一个CPU时钟周期内即可完成数据的访问和刷新,其数据传输速度远远大于传统的数据存储器(DRAM),被广泛的应用于高速数据传输系统中。基于FPGA的SDRAM控制器,以其可靠性高、可移植性强、易于集成的特点,已逐渐取代了以往的专用控制器芯片而成为主流解决方案。然而,SDRAM复杂的控制逻辑和要求严格的时序,成为开发过程中困扰设计人员主要因素,进而降低了开发速度,而且大多数的基于FPGA的SDRAM控制器都是针对特定的SDRAM芯片进行设计,无法实现控制器的通用性。本文介绍一种通用SDRAM控制器的FPGA模块化解决方案。        SDRAM控制逻辑复杂,命
[嵌入式]
FPGA系统的供电要求和最新DC/DC稳压器解决方案
随着FPGA制造工艺尺寸持续缩小、设计配置更加灵活,以及采用FPGA的系统的不断发展,原来只采用微处理器和ASIC的应用现在也可以用FPGA来实现了。最近FPGA供应商推出的新型可编程器件进一步缩小了FPGA和ASIC之间的性能差别。尽管这类器件的可配置性对设计工程师很有吸引力,但使用这些器件所涉及的复杂设计规则和接口协议,要求设计工程师经过全面的培训,并需要进行参考设计评估、设计仿真和验证工作。另一方面,FPGA应用中非常复杂的模拟设计,例如用于内核、I/O、存储器、时钟和其它电压轨的DC/DC稳压器,也要求新的解决方案。本文讨论的高性能DC/DC转换器有助于系统设计工程师克服这些挑战。 FPGA系统的供电要求 1.
[嵌入式]
使用FPGA开发视频算法进行图像和实时视频处理
  人脑是我们所知道的最先进的紧凑型处理单元;但是,由于有了新的处理器、工具、架构和软件,图像处理方面的改进可能会让机器很快超越我们。新技术及其快速采用的速度为工业制造和检查以及医药、消费电子/游戏,当然还有机器人技术带来了巨大的潜力。   现在,我们在执行简单的任务(例如装满一罐水)时会执行比例、积分和微分 (PID) 等高级功能。事实上,我们进行如此复杂的运动控制和平衡,机器人可能很快就会嫉妒我们。然而,我们杰出的能力之一是我们能够在我们的视野中挑选出模式、执行物体识别、深度感知、跟踪运动和测量相对速度甚至加速度,这使我们与大多数机器不同。   早期的图像处理专注于澄清静止图像,许多用于边缘增强和呈现细微细节的算法并未
[嵌入式]
使用<font color='red'>FPGA</font>开发视频算法进行图像和实时视频处理
快速实现基于FPGA的脉动FIR滤波器
    引言 目前,用FPGA(现场可编程门阵列)实现FIR(有限冲击响应)滤波器的方法大多利用FPGA中LUT(查找表)的特点采用DA(分布式算法)或CSD码等方法,将乘加运算操作转化为位与、加减和移位操作。这些结构需要占用器件较多的LE(逻辑元件)资源,设计周期长,工作频率低,实时性差。本文提出一种基于Stratix系列FPGA器件的新的实时高速脉动FIR滤波器的快速实现方法。利 用FGPA集成的DSP(数字信号处理器)乘加模块定制卷积运算单元,利用VHDL(甚高速集成电路硬件描述语言)元件例化语句快速生成脉动阵列结构的FIR滤波器,设计周期短、可移植性强,设计采用全流水结构,能高速、无滞后地实现实时信号处理。 1 设
[嵌入式]
基于ARM的快速原型化平台的实现
1 背景介绍 在日益信息化的社会中,各种各样的嵌入式系统已经全面渗透到日常生活的每一个角落。嵌入式系统的功能越来越复杂,这就使得一个嵌入式系统产品从市场需求立项到方案选择、样机研制、定型量产所需要的开发费用越来越多,所需开发时间越来越长。因此,高效的嵌入式系统设计方法就显得尤为重要。 1.1 传统的嵌入式系统设计方法 嵌入式系统开发的关键就是对核心部分进行功能验证。传统的验证方法是建模模拟和制作目标板评估。 通过建模来进行功能验证存在不足。首先就是耗时和准确性互相矛盾。建立高层次的模型需要的时间短,但是模拟不够准确。相反,低层次的模型可以达到满意的评估效果,但是建模耗时长。其次,建模模拟是静态的过程,不能很好地反映系统实际
[单片机]
基于ARM的快速原型化平台的实现
基于FPGA的DS/CDMA解扩解调模块设计与实现
在CDMA通信系统中,用于基站信号转发的接收机是一个核心模块,一台接收机只是处理一路用户的解扩解调显然是不合理的,为了提高接收机的效率和降低成本,有必要设计一种多路CDMA信号通用解扩解调平台。而FPGA具有功能强大,开发工程投资小,周期短,可反复编程修改,保密性能好,开发工具智能化等优点,本项目决定采用FPGA作为设计平台;本文首先建立了CDMA信号的扩频调制与解扩解调系统模型,然后提出设计这样一个多路CDMA信号通用解扩解调平台。该平台将保证处理CDMA解扩解调的通用性,既可以将此平台用在CDMA信号蜂窝基站的建设上,也可以用在CDMA卫星地面的基站建设上。   图1 DS/CDMA解扩解调系统原理框图   1 DS
[单片机]
基于<font color='red'>FPGA</font>的DS/CDMA解扩解调模块设计与实现
小广播
最新测试测量文章
换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved