示波器频域测量理论与实践

发布者:EtherealEssence最新更新时间:2020-03-16 来源: eefocus关键字:示波器  频域测量  理论与实践 手机看文章 扫描二维码
随时随地手机看文章

示波器作为硬件工程师实验台上的必备装备之一,在验证、调试、测试及测量过程中扮演着至关重要的角色。虽然示波器主要被作为时域测量工具,但其本质上和频谱仪等频域测量工具一样,都是将是模拟信号采样数字化后进行显示与分析。时域和频域只是同一个事物的不同观察角度,而频谱仪所做的只是进一步对时域信号进行了变换。因此,目前主流示波器都在经典时域示波器的基础上加入了频域分析功能。本文将讨论一些常用的示波器频域分析方法和技术,同时给出一些自己的理解,期望通过对这些方法理论上的了解,更好的指导我们在实践中的操作,打消大家对示波器的频域功能的一些疑虑,欢迎大家讨论与拍砖。


1 为什么示波器没有取代频谱仪?

正如前面所说,示波器和频谱仪本质上都是对时域信号的采样数字化。理论上讲,频谱仪所完成的功能示波器也应该能做到。简单的说就是做一个FFT嘛,这个功能在本科信息专业的实验课里都写过这段代码。于是,大家发现忽然一天几乎所有厂家的示波器都声称有了频域分析的功能。然而,大多数示波器的频谱分析功能往往成为工程师眼中的鸡肋——大多数人除了买示波器的那一瞬间看应用工程师演示过一遍以外,自己从来没有在实际工程中使用过这个功能。那么,为什么示波器的频域分析功能会沦落到这个尴尬的境地呢?笔者从客观和主观上认为主要有以下几点原因:


• 示波器是宽带系统,频谱仪是窄带系统

示波器是一个低通系统,主流示波器的通带从DC到几百MHz、几GHz、几十GHz甚至上百GHz不等。频谱仪是个带通系统,而目前最先进的、号称超宽带频谱仪的通带宽带也只有几百MHz。带宽越大意味着系统接收的噪声越多,相同的信号功率下信噪比就越差,从频域看来就表现为底噪越高。信号被淹没在滔滔的噪声中,自然频域分析的能力就下降了。


• 示波器的ADC量化精度远小于频谱仪的量化精度

采样率和采样深度(位宽)就像鱼和熊掌一样不可兼得。示波器追求时域的高采样率,其结果必然以牺牲有效采样位数为代价。通常高速示波器的位宽只有6~8位,而频谱仪的位宽往往可以做到12~14位。系统每增加1位量化位数会减小6dB的量化噪声,因此频谱仪较示波器又进一步降低了噪声对信号的影响。因为噪声在频谱仪中显得如此之小,从某个方面讲,导致了频谱仪使用对数坐标来显示很小的噪声,而示波器只用线性坐标来表示。


• 主观原因

上面都是示波器和频谱仪在客观上的性能区别。笔者认为还有一种主观原因导致了示波器频域分析的窘境。那就是仪器制造商会考虑如果将示波器的频域功能做的很完善了,会对其频谱仪产品造成一定的冲击。当然,如果真的做出来这么一款实用的产品的话,相信厂家也会纷纷顺应时代的变迁的。


2 如何提高示波器频域分析的能力?

了解了示波器没有拼过频谱仪的原因,那么有没有办法让示波器在频域分析上变得更强大、更实用些呢?下面就分别介绍几种目前示波器里常用的方法。


• 滤波

频谱仪通过各种模拟/数字滤波器将系统带宽限制在一个较窄的范围内从而提高信噪比,同样的思路当然也可以用于示波器。然而如果在示波器的模拟通道上人为引入一些模拟滤波器不但会增加成本,而且与示波器追求高带宽的初衷相违背。为了解决这一矛盾,可以在数字域进行滤波。当已知信号中心频率和带宽时,可以先将ADC采样后的数字信号下变频到基带(数字下变频DDC),然后通过数字滤波器滤除带外噪声。这时再进行FFT得到的频谱图底噪就会降低。


• Overlap FFT

示波器频谱分析功能的初期做法就是将采集到的数字信号进行FFT后显示在屏幕上。这种简单粗暴的做法会导致下面一些问题。


首先,对于数字信号来说,离散傅里叶变换(DFT)是时域信号和频域信号连接的纽带。所谓DFT,就是将数字信号进行周期延拓后计算这个周期信号的离散傅里叶系数(DFS),而FFT只是一种计算DFS的快速算法。在这个过程中周期延拓有可能引入信号的不连续,从而导致产生新的频谱分量(频谱泄露)。如图1所示。


图1 周期延拓产生不连续,导致频谱泄露


其次,FFT作为一种快速算法,要求样点个数满足2的幂次。同时,由于硬件实现时的资源限制,其FFT点数又不能太大,例如通常会采用2048点的FFT。然而示波器一次采集的样点数往往远大于FFT点数,处理这个问题有两种方式,1.不用FFT,直接计算DFT,显然这样会增加计算负担,导致响应速度、刷新率降低。2. 将较长的采集信号分成若干个2048点的小段,每段分别计算FFT。注意到第二种方式虽然计算量降低了,但仍然存在频谱泄露的问题。


为了解决这个问题,我们人为的将每个小段边缘的信号进行衰减,即加窗。这样信号周期延拓后就没有不连续问题了,频谱泄露问题得到了改善,如图2所示。


图2 加窗解决不连续问题


然而问题到此并没有完全解决,加窗就是给时域信号乘以一个窗函数,信号与系统理论告诉我们:时域的相乘就是频域的卷积。而窗函数的频谱显然不是一个Delta函数,卷积后原信号的频谱产生了弥散,因此窗函数的引入降低了频域的分辨率。人们又根据各种不同的准则设计出不同的窗函数,如图3所示。不同的窗函数其频域特征并不相同,有的关注于如何降低旁瓣电平(提高幅度分辨率,即让信号在噪声中浮出水面),有的关注于最小化主瓣宽度(提高频率分辨率,即让两个频域相邻信号在频域上分辨出来)。帕斯瓦尔定理说明时域或频域的能量是守恒的,要么把底噪压低些主瓣就变胖点,要么把主瓣挤瘦点底噪就抬高些。总之,鱼和熊掌不可兼得,表1提供了一些常用的窗函数供大家使用时参考。


图3 窗函数时域频域对比


表1 各种窗函数对比


另外,对于时变信号,这种分段FFT的做法还可以带来另一个问题:有些瞬时出现的信号,很可能因为窗函数的引入而被衰减掉,无法在频域看到。解决方法也相当直观和有效,让每一段FFT之间有一段重叠(overlap FFT)。如图4所示。当然,这样做的代价是采样点被重复计算了,总的运算量增加了。


图4 Overlap FFT


这里值得注意的是,不论加何种窗函数,是否overlap,分段FFT的方式相比直接计算DFT方式都会带来一个共同的问题:频率分辨率(RBW)降低。频域分辨率=采样率/DFT点数,分段计算减少了DFT点数,因此频域分辨率变差。


3 展望

细心的读者也许会注意到,其实分段FFT的方式实际上就是时频分析中的短时傅里叶变换(STFT)。从这个角度讲,示波器还可以将时间轴引入画出一张频谱随时间变化而变化的时谱图。例如图5所示,通过观察时频域上的异常或许会更快的帮助我们找到问题之所在。当然,这种变换不仅限于STFT,还有Gabor变换等各种变换,就像窗函数一样满足不同的设计准则。此外,通过时频谱分析对于某些特定的调制信号,例如FSK、OFDM等,还可以设定特定的时频域触发条件(比如在时频谱上按时间依次画出f1,f2,f1,f3这样一个模板,当满足模板的pattern出现时示波器触发)。将现有一些示波器的频域触发功能扩展到时频域触发,这个功能在一些基带信号的调试过程中将起到很大帮助。


图5 用时谱图显示频谱随时间的变化


4 小结

本文通过对示波器频域分析功能的阐述,介绍了其中的基本原理、概念以及基本方法,希望能拓展大家对示波器的认识,在实践中起到积极的作用,针对不同的问题,不同的应用场景,有的放矢,选择合适的示波器设置,更好的用好我们基本的测量工具—示波器。

关键字:示波器  频域测量  理论与实践 引用地址:示波器频域测量理论与实践

上一篇:用示波器查找故障的方法
下一篇:示波器使用中的六大常见问题解答

推荐阅读最新更新时间:2024-11-11 05:06

示波器的采样率概念详解
想象一下一张照片要怎么样才能清晰?当然是像素点越多,照片包含的原始信息就越接近真实,自然看起来也就越清晰。 我们从示波器上看到的波形其实也可以理解成一张照片,那么这张照片包含的点越多,自然也就越接近真实的样子。示波器的存储深度就是表达了示波器最多能存储多少个数据点。比如28Mpts的存储深度,说明示波器最多可以存储两千八百万个采样点。 对于拍摄一张静止的照片,照相机拍照时间的快慢关系并不大,因为结果并不会改变。但是由于信号是不断变化的,因此对示波器而言更像是在不停拍摄运动的照片,并且是超高速的运动,这个时候除了采样点数量以外,采样点采集的速度也就至关重要了。示波器重建一个信号不仅仅取决于有多少个数据点,采集数据点的速度也很
[测试测量]
<font color='red'>示波器</font>的采样率概念详解
高端示波器中的数字信号处理技术
图1. 90000-X示波器捕获板 图1是90000-X示波器的捕获板。90000-X示波器使用磷化铟技术,其硬件带宽可达33GHz,实时采样率可达80GSa/s,存储深度可达2GB。这些指标都达到了业界顶尖的水平。但是随着采样速率和存储深度的提升,数字信号处理能力成为一大挑战,传统的使用内置计算机的Matlab软件处理方式已经不能满足测试速度的要求。现在,90000和90000-X示波器采用FPGA硬件进行数字信号的处理,代表了示波器数字信号处理技术发展的方向。 90000和90000-X示波器的FPGA执行了如下处理,大幅度提升了示波器响应的速度;其FPGA也集成了嵌入去嵌入和精密探头校准算法,也大幅度提升了
[测试测量]
高端<font color='red'>示波器</font>中的数字信号处理技术
一张图带你看懂示波器存储深度
存储深度可以看做示波器第三重要的指标。 示波器的基本操作和指标在苏老师的文章中介绍的很详细了,见第二篇。这里提一下文中没提到的一个重要指标,存储深度。 存储深度,也叫存储长度,是示波器可以保存的采样点的个数。 请记住这个公式:存储深度=采样率x采样时间 下面看这张图: ~~~~~~~~~~~~~~~~~~~~~~~ 第一个图,存储深度够深,可以采到多达6个周期的波形。 第一张图的右侧,我们假设水龙头给水缸注水,6分钟注满 水缸容量=存储深度 6分钟=存储时间 水龙头注水速度=采样率 ~~~~~~~~~~~~~~~~~~~~~~~ 第二张图,存储深度很小的示波器,你想在采样率不降低的情况下进行采样,那采样时
[测试测量]
一张图带你看懂<font color='red'>示波器</font>存储深度
汽车示波器设置注意事项
1.注意事项 ①测试点火高压线时,必须使用专用的电容探头,不能将示波器探头直接接入点火次级电路。 ②使用汽车示波器时,注意远离热源,例如排气管,催化器等,温度过高会损坏仪器。 ③汽车示波器在测试时要注意测试线尽量离开风扇叶片、皮带等转动部件。 ④测试时确认发动机盖的液压支撑是好的,防止发动机盖自动下降时伤及头部或损坏汽车示波器。 ⑤路试中,不要将汽车示波器放在仪表台上方,最好是拿在手中测试。 2.信号频率和时基选择 时基/频率表的用途是帮助根据信号频率来选择时基或判断显示波形的频率。 时基/频率表的使用方法:可以通过计算屏幕显示波形的循环次数(1-5)的方法用汽车
[测试测量]
RIGOL数字示波器优化打火机生产线自动化测量解决方案
近几年中国打火机市场发展突飞猛进,不仅在国内市场表现活跃,更在世界市场上取得了骄人的成绩。据统计,全球每年的打火机需求量为160亿只,而中国打火机产量就能达到100亿只左右,年销售额70亿元人民币,约占世界打火机生产量的70%。 目前中国国内大部分打火机生产都是采用压电效应技术。压电效应是某些介质在力的作用下产生形变时,在介质表面出现异种电荷的现象。这种实现力──电转换等功能的神奇效应已被应用到与生产、生活、军事、科技密切相关的许多领域,国内的打火机厂商基本都是选用压电陶瓷作为原材料。 在打火机的生产过程中测量陶瓷元件产生的瞬间电压是非常重要的工作,在传统的生产线上,国内打火机厂商缺乏专业测量仪器,市场上唯一的打火机电子测试仪
[测试测量]
RIGOL数字<font color='red'>示波器</font>优化打火机生产线自动化<font color='red'>测量</font>解决方案
通过示波器测试SPC协议解码
在很多的场合,我们往往需要测量较高精度的角度和位置,例如汽车的油门,节气门位置以及转向扭矩感应等。由此,用于传输磁感应强度的SPC应运而生,下面我们来了解一下此协议的内容。 SPC概述 SPC(Short PWM Code)协议,是基于SENT(Single Edge Nibble Tranmission)协议的增强版,通过两个相邻周期的下降沿之间的脉冲实现数据传输,相对于模拟输出和PWM输出,具有很好的EMC特性,具有较高的传输速度,较强的可靠性和抗干扰能力。此协议广泛应用于精确的转动角度测量和位置检测,汽车应用包括踏板、油门或变速杆位置检测,悬架控制或电动助力转向系统直接扭矩检测等。 SPC协议以单线半双工传输的方式进
[测试测量]
通过<font color='red'>示波器</font>测试SPC协议解码
汽车专用示波器结构简介
  汽车专用示波器种类较多,下面主要以OTC VISION2汽车专用示波器为例,介绍它的组成情况,如图1所示。示波器主要由诊断模块、测试主机、存储卡、外接电源线、热起动开关、主电源开关、串行接口、外部电源接口、测试线缆等组成。   图1 OTC示波器的组成   诊断模块:电控系统传感器输出的电压、电阻和频率信号,须经诊断模块进行处理,使之成为测试主机能够识读的数字信号。该示波器配各了两种诊断模块,一种是示波器诊断模块,另一种为发动机测试模块。它安装在测试主机顶部,对采集的信号进行预处理,测试线缆与它相连。   测试主机:它包括显示器、键盘和电路板,显示器为人机对话的界面,操作菜单,测试结果、所测波形通过显示器显示。键盘为仪器
[测试测量]
汽车专用<font color='red'>示波器</font>结构简介
如何使用数学函数波形和参考波形
如何使用数学函数波形 使用数学函数控件可选择数学函数: • 加。 • 减。 • 乘。 • FFT (快速傅立叶转换)。 可以使用网格和光标控件来测量数学结果。 可以使用在 “ 数学 ” 菜单中选择的菜单项以及 输入旋钮来调整数学波形的 振幅。调整范围是从 0.1% 至 1000% (以 1-2-5 步幅)。 数学刻度设置显示在显示屏底部。 图 21 数学刻度设置值 加、减或乘波形 1 按下数学 。 2 在 “ 数学 ” 菜单中,按下运算。 4 按下信源 A,然后继续按下软键以选择所需的输入通道。 5 按下信源 B,然后继续按下软键以选择所需的输入通道。 6 要反转加、减或乘的结果 (参照参考电平),可选择反转以在 “ 打开
[测试测量]
如何使用数学函数波形和参考波形
小广播
最新测试测量文章
换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved