与网络分析仪、示波器以及信号发生器一样,频谱分析仪也属于必不可少的射频测试测量仪器。而在所有射频测试仪器中,频谱分析仪是功能最为齐全的一类,能够完全适用于实验室设备,或集成在较大的射频测试组件中,也可以用作移动射频信号/干扰捕获应用的一部分,甚至可以是无线和手机信号塔技术人员的随身穿戴装备。这些设备对于识别和定位干扰信号以及测量射频组件和系统来说至关重要。
一、频谱分析仪的应用
频谱分析仪在本质上是专业度极高且可进行不同配置调整的接收器,因此应用范围非常广泛,能够用于检测和测量连续波(CW)及调制射频/微波信号。通常情况下,频谱分析仪的感应硬件以及相关功能项与软件及控制系统相结合使用,进而实现更为强大的信号信息收集和测量。例如,某些频谱分析仪可用于测量动态范围、峰值功率、平均功率、峰值平均功率比(PAPR),以及其他在表征射频设备中所需的性能测量。
用户在使用频谱分析仪时,最常见也最熟悉的界面是标准频率与信号功率曲线。一些频谱分析仪还可以绘制出在一段时间内的频率和信号功率,称为瀑布图,这对于分析处于该时间段内的瞬态信号特性来说非常有用。其他常见的频谱分析仪界面还包括调制/解调图示,其中有部分能够直接显示来自输入信号的IQ数据。
二、频谱分析仪的类型
频谱分析仪也称信号分析仪,主要类型有:扫频式频谱分析仪(SSA)和实时频谱分析仪(RTSA)。
(1)扫频式频谱分析仪(SSA)使用调谐元件沿所需的频率范围进行扫描。老式的扫频式频谱分析仪(SSA)在工作时使用模拟调谐、滤波及显示元件,而现代扫频式频谱分析仪(SSA)将输入信号数字化,并使用快速傅立叶变换(FFT)方法将时域输入信号转换为频域。
(2)实时频谱分析仪(RTSA)与扫频式频谱分析仪(SSA)相似,不同之处在于实时频谱分析仪(RTSA)在扫描时,使用叠加的FFT,从而可以捕获持续时间非常短的信号。实时频谱分析仪(RTSA)还可以用于在设定的频率范围内连续捕获信号信息,直到达到实时带宽的极限。
三、频谱仪常用配件:
近场探头:近场探头的作用类似于宽带天线,用于拾取组件,PCB 迹线,外壳开口或缝隙以及可能发射射频的任何其他部件的辐射。常用于辐射发射 EMC预一致性测量。
N型转接头:频谱仪输入接口通常为 N 型接头,通常需要通过转接头进行转接 SMA 或 BNC 线缆使用。
射频线缆:SMA 或 BNC 等射频信号传输线缆。
天线:用于接收空间信号连入频谱仪的部件,通常分全向天线和定向天线两种。
VSWR 桥:利用驻波比电桥测驻波,特别是对于天线驻波比的测量。
功率衰减器:功率衰减器是在指定的频率范围内,对信号功率进行定量衰减的电路,将超出频谱仪量程的信号通过功率衰减器衰减然后测量,可提高频谱仪动态范围。
机架安装套件:频谱仪上机架安装有原厂提供固定套件。
关键字:射频万用表 频谱分析仪 射频测试
引用地址:
浅谈射频万用表——频谱分析仪
推荐阅读最新更新时间:2024-11-02 02:53
矢量网络分析仪测试射频线线损的注意事项
本期视频安迪为大家讲解线损与频率的关系,说矢量网络分析仪在使用的过程中是有线缆损耗的,如果频率越高影响比较大,低频影响小一些。 感兴趣的话一起来看一看吧~
[测试测量]
数字下变频FFT及其在频谱分析仪中的实现
0 引 言 在频谱分析仪中,传统的FFT实现方法首先是对低中频信号进行ADC低采样率采样,然后将采样数据保存在RAM中;当数据足够后,进行FFT运算,将获得的频谱数据显示在屏幕上。这种FFT方法可以说是简单易行,但在处理宽带高中频信号方面,由于受Nyquist采样定理的约束,需要使用高采样率。此时实现窄的分辨率带宽将需要大量的采样数据,这就使得系统不仅需要提高存储空间,而且增加了运算量,同时有很多冗余输出数据,导致算法的效率非常低下。 随着高速A/D变换和DSP技术的发展,软件无线电设计思想也被应用到频谱分析仪中,基于软件无线电数字下变频的FFT技术能够有效减少上述传统FFT技术存在的问题。在高中频、高采样率系统中,能实现信号频谱
[测试测量]
基于FPGA平台的手持式频谱分析仪的设计原理
频谱分析仪可以方便设计人员确定干扰信号的频率范围,以便选择合理的滤波方案,但一般的频谱分析仪体积较大,不便于工业现场使用,因此设计手持式频谱分析仪,便于携带,功耗低,可长时间记录数据,还可通过网络远程操作。 本频谱仪的设计是以赛灵思的FPGA为核心,先在模拟前端驱动可编程放大器完成模拟信号的放大及电平迁移,然后按设定的采样频率驱动ADC完成数据采集,之后完成快速傅立叶变换,最后将结果显示在4寸彩色液晶屏上,并按设定存储数据或是通过网络传输数据。 频谱分析在生产实践和科学研究中有着广泛的应用。所谓频谱分析就是将信号源发出的信号强度按频率顺序展开,使其成为频率的函数,并考察变化规律。对于一个电信号的研究,我们可以分
[测试测量]
手机射频测试总结(四)——CMMB 部分(补充)
对于CMMB问题作下补充,前文说MF_ID_0用于传输控制信息为控制帧,而其他的帧为业务帧。业务帧根据不同的调制方式及编码方式的配置,可以由2-9个复用帧来传输一个电视节目。这些业务帧又分为若干子帧。这些复用子帧为业务传输实体,承载音频视频及数据。根据承载的信息量不同,子帧数也是不同的,可以从1-15个。对于复用帧及复用子帧的组成,也是分为很多段的,比如复用帧TS0分为复用帧头,控制信息表,TS1-39分别复用帧头,复用子帧表。复用子帧又分别子帧头,视频段,音频段,数据段,而两种帧头还包含更多的数据段,如果想了解更多的,可以找一些参考资料来看,我就不把这些都搬上来了。 此外控制帧TS0的参数配置是固定的,调制方式为BPSK,RS(2
[测试测量]
RF MEMS市场呈爆炸性增长,测试领域应用成为主推力
德国市场分析公司Wicht Technology Consulting(WTC)预计,今后几年市场对RF MEMS开关的需求将急剧增长。成长最大的领域为半导体产业的测试设备,其次为手机和电信基础设施。 WTC发现,2006年全球总市场容量为500万美元,5年内市场将增长到2.1亿美元,呈爆炸性增长。WTC认为2000年后这个技术的发展符合著名的技术成熟度周期模型:2003年为过热期(peak of inflated expectations),2004到2005年为幻觉破灭谷底期(trough of disillusionment),现在进入复苏期(slope of enlightenment)。这表明产业和技术正在成熟
[传感器]
简单改装,iPad变频谱分析仪
业界首款面向所有 iOS 设备的射频检测设备
2011 年 11 月 21日,北京讯,加州圣何塞讯——赛普拉斯半导体公司(纳斯达克股票代码:CY)日前宣布 Oscium 在其面向 iPod touch、iPhone 和 iPad 的全新 WiPry™ 系列产品中选用了 PSoC® 3 可编程片上系统。WiPry 系列是业界首款面向 iOS 设备的 RF 检测设备,可将 iOS 设备转变成为频谱分析仪、动态功率表或兼具二者功能的设备。WiPry 系列产品中的 PSoC 3 器件可无缝地管理赛普拉斯 WirelessUSB LP 收发器,并支持 Apple 专有的 MFi 协议,实现与 iOS 设备的通信。
Oscium 的
[测试测量]
基于软件定义无线电的实时频谱分析仪功能概述(二)硬件架构
虹科实时频谱分析仪是集成的无线电接收器和数字化仪/分析仪,它具有嵌入式捕获控制器,使用户能够: 定义并执行实时,精密的触发,跟踪和扫描 配置与这些跟踪和扫描有关的无线电RFE和DSP 捕获的时间标记和数据输出 跟踪和扫描由下图数字化仪中的捕获控制器部分控制。跟踪和扫描分别定义为单个(块或连续流)捕获和一系列捕获,每个捕获与其硬件配置相关联。 虹科HK-R5550支持不同的RFE操作模式和后续的DSP功能,如下表所述,并会在后续的文章中进行详细介绍。 *无线电RFE模式和DSP数据输出格式 对于SH和SHN模式,当使用抽样时,将自发进行35MHz的频移,以使虹科HK-R5550的中心频率回到零IF,因此数据输出将
[测试测量]
复杂RF环境下的 RFID 测试挑战
随着设备价格的下降及全球市场扩大,RFID应用正面临飞速发展。嵌入式RFID的使用量不断提高,随着泛在ID中心(UbiquitousIDCenter)和T引擎论坛(T-EngineForum)等协调性机构的形成,GSM协会现已支持将基于RFID的近场通信技术运用于手机中。 RFID的一大挑战是在复杂的、甚至苛刻的RF环境中优化吞吐量或数据读取速度。无源RFID标签可以对射频范围内的任何一个或多个阅读器做出反应。协议中规定了这些通信的行为,但在实际的通信过程中,如果没有适当的设备,则很难对其进行测试。此外,在集成到采用蜂窝技术、WLAN、蓝牙或ZigBee技术的同一台设备中时,也需要运行嵌入式RFID系统。最后,必须考虑
[网络通信]