在使用示波器探头探测时,应注意避免这七大错误

发布者:chwwdch最新更新时间:2023-01-30 来源: jdzj关键字:示波器 手机看文章 扫描二维码
随时随地手机看文章

  理想情况下,所有探头都应该是一条不会对被测设备产生任何干扰的导线,这样才能精确复制被测信号。但现实情况是,探头会给电路带来负载效应,探头上的电阻、电容和电感元件可能改变被测电路的响应。又因为每个电路不尽相同,每次探测设备,需要选择对测量影响最小的探头,这是成功测量的关键。


  以下这些错误,是大家在测量过程中最常见的,请牢记它们并在平时的测量中规避这些错误,以便获得更精准的测量结果。


  常见错误一:没有校准探头

图片1.jpg

  探头在交付之前已进行校准,但没有针对示波器前端进行校准。如果它们未在示波器输入端上进行校准,就无法得到测量结果。有源探头和无源探头的情况也略有不同。


  若有源探头没有针对示波器进行校准,则您将看到垂直电压测量结果和上升沿时序(以及可能的一些失真)出现差异。大多数示波器具有参考或辅助输出功能,还配有指南来引导您完成探头校准。


  无源探头可以调节探头的可变电容,使补偿与正在使用的示波器输入完美匹配。大多数示波器都有可以用于校准或参考的方波输出。探测这个连接,检查波形是否为方形。根据需要调整可变电容,以消除所有下冲或过冲。


  常见错误二:增加探头负载效应

  只要将探头连接到示波器并与设备接触,探头就会成为电路的一部分。探头对设备施加的电阻、电容和电感负载效应会影响你在示波器屏幕上看到的信号。这些负载效应可能会改变被测电路的工作状态。探头的基本电路如下图:

  

图片2.jpg

  通常,探针的输入线或引线越长,带宽减小得就越大。较窄带宽的测量可能不会受到太大影响,但在进行较宽带宽的测量时,特别是在 1 GHz 以上时,需要谨慎选择使用的探针和附件。随着探头带宽降低,将失去测量快速上升时间的能力。为了进行最准确的测量,最好使用尽量短的探针。另外,保持接地线尽量短并靠近系统接地点,也可以确保可重复和准确的测量。


  如果必须在探针上添加导线才能接触到难以到达的探测点,那么最好为探针添加一个电阻,以减弱所添加的导线引起的谐振。

  

图片3.jpg

  常见错误三:没有充分利用差分探头

  许多人认为只有在探测差分信号时才使用差分探头,却不知道在探测单端信号时也可以使用差分探头来节省时间和金钱,同时提高测量的准确性。


  差分探头可以进行与单端探头相同的测量,并且由于差分探头在两个输入端上有共模抑制,所以差分测量结果的噪声大为减少。这将帮助你看到被测设备信号更优的表示,而不会被探测所增加的随机噪声误导。


  常见错误四:选择了错误的电流探头

  大电流测量:如果使用钳形探头测量大电流(10A - 3000A),那么设备必须足够小,钳形探头才能夹住它;如果设备太大钳形探头无法夹住,那么工程师可能会想办法在探头钳夹上添加额外的导线,但这会改变被测设备的特性。


  最好的解决方案是使用具有柔性回路探头前端的大电流探头,叫做 Rogowski 线圈,可以缠绕到任何设备上,还能帮你在不添加未知特性元器件的情况下探测设备,使测量结果保持高度的信号完整性。其测量范围涵盖从 mA 级到数百 kA 的大电流。但它只测量交流电流,且灵敏度也低于某些电流探头。

  

图片4.jpg


  小电流测量:使用垂直标度较大的示波器设置,可以测量大信号,但小电流信号将被测量噪声掩盖;使用较小的垂直标度设置,那么大信号会削波,测量结果也将失真并失效。选择具有足够灵敏度和动态范围的小电流探头,不仅能够测量从 μA 到 A 的宽量程,还可以使用多个放大器同时查看大小电流偏差。探头中的两个可变增益放大器允许你设置放大视图以查看小电流波动,还可以缩小视图以同时查看大电流尖峰。


  常见错误五:在纹波和噪声测量期间错误地处理直流偏置

  直流电源上的纹波和噪声是由较大直流信号上的小交流信号形成的。当直流偏置较大时,可能需要在示波器上使用较大的每格电压设置才能在屏幕上显示信号。与小交流信号相比,这样做会降低测量的灵敏度并增加噪声。如果使用隔直流电容器来解决这个问题,那么将阻隔部分低频交流内容而无法观察到信号在经过设备上的元器件时发生的变化。

  使用具有较大偏置功能的电源探头,可以将波形置于屏幕中间,而无需移除直流偏置。这样可以让整个波形都显示在屏幕上,同时保持垂直标度较小且处于放大状态。通过这些设置,你可以查看瞬态、纹波和噪声的细节。


  常见错误六:未知的宽带限制

  在进行重要测量时,务必选择具有足够带宽的探头。带宽不足会使信号失真,令你很难做出明智的工程测试或设计决定。


  普遍接受的带宽计算公式为:评测从 10% 到 90% 的上升沿时,带宽乘以上升时间等于 0.35。

  

图片5.jpg

  值得注意的是,整个系统带宽也是需要考虑的重要因素。通过探头和示波器的带宽确定系统带宽。计算公式如下:

  

图片6.jpg

  常见错误七:被掩盖的噪声影响

  探头和示波器的噪声可能会导致被测设备的噪声显得更大。选择具有合适衰减比的探头,将会减小探头和示波器所添加的噪声,从而获得更准确的信号,更清晰地查看被测设备的情况。


  有一种方法可以简单地估算探头噪声大小,就是从探头的技术资料或手册中检索该探头的衰减比和探头噪声电平。许多探头制造商将探头噪声描述为等效输入噪声(EIN),并以 Vrms 为单位表示。较高的衰减比使您可以测量较大的信号,但缺点是示波器将检测到这些比率并同时放大信号及其噪声。

  

图片7.jpg

  每个电路和测试环境都各不相同。在一个环境中有效的探头,在另一个环境中不一定仍有效。因此,你必须了解在每个测试场景中使用哪种工具和技术才可以得到准确的测试结果。


关键字:示波器 引用地址:在使用示波器探头探测时,应注意避免这七大错误

上一篇:电源波纹测量要注意示波器探头的接地环路
下一篇:高压差分探头的使用技巧及主要应用

推荐阅读最新更新时间:2024-11-13 10:53

示波器对信号频率的测量
对于任何周期信号,U1100可用前述的时间间隔的测量方法,先测定其每个周期的时间T,再用下式求出频率。 例如示波器上显示的被测波形,一周期为8div,“t/div”开关置“1t/S”位置,其“微调”置“校准”位置,则其周期和频率计算如下:所以,被测波形的频率为125kHz。 使用不当造成的异常现象 示波器在使用过程中,往往由于操作者对于示波原理不甚理解和对示波器面板控制装置的作用不熟悉,会出现由于调节不当而造成异常现象。现把在示波器使用过程中常见的由于使用不当而造成的异常现象及其原因罗列于下,供参考。 现象1没有光点或波形。 原因:电源未接通。 辉度旋钮未调节好。 水平位移、垂直位移旋
[测试测量]
MSOX2024A安捷伦示波器的使用方法
一、大显示屏 大尺寸的显示屏可以提供佳的信号可视性。8.5英寸 WVGA 显示屏与同档的其他示波器相比,显示面积至少增加两倍,分辨率至少提高五倍 (WVGA 800x480 相比 QVGA 320x240)。 二、快更新速率 Infi niiVision 2000 X 系列采用安捷伦的 Mega Zoom IV 定制 ASIC 技术,具有高达每秒 50,000 个波形的更新速率。利用这个速度,您能观察到某段时间内的更多信号细节和偶发异常。 三、更深的存储器, 更长的捕获时间 Agilent 2000 X 系列示波器具有高达 100 kpts 的存储器,是同档其他示波器的 40 倍以上,支持您捕获长时间的非重复信号,同时保持
[测试测量]
示波器操作指南
真笨!示波器都不会用’,如果这句话当着各位自动化专业的大虾的面,可能你会很尴尬,或者认为我在羞辱你,说真的,示波器谁不知道,中学都学了,但把它摆在你面前,除了知道它用来干吗,有几个会操作的,天天就知道搞所谓的高科技了,不要好高恶远,到时候会很尴尬的,今天我斗胆在我认为国内最具有价值的中国工控网这个虚拟的空间羞辱一下各位大虾,免得现实生活中尴尬噢。 这是我在网上发现的好东东,现在介绍给各位,当时可是让我好尴尬的,过去对示波器我也很不会玩的,这位小弟(听说还是位在校大学生呢)让我这位自认为在自动化领域走南闯北的大哥好没面子,幸亏在电脑前,还好!不好意思!这位小弟的EMAIL忘了,看到这个网站一贯强调的‘求真务实,勤奋唯美’,让我很震动
[测试测量]
<font color='red'>示波器</font>操作指南
浅懂示波器FFT快速傅立叶变换功能及运用
大多数示波器上都有个FFT功能,也叫快速傅立叶变换,但很多人不了解这个功能是做什么用的,百度以后又会遇到各种各样的高数公式,看的一头雾水,遂而放弃这块知识。 我们来看百度百科的解释: FFT,即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。 这一看,头都大了。 今天我们就带大家简单的了解下什么是傅里叶变换以及它的功能作用。 本文不会涉及任何数学公式,目的只在让大家能理解傅里叶变换表达的是什么,至于怎么来的,我们不管。 理解傅立叶变换基本原理: 傅立叶变换认为,任何复杂的信号都是由多个正余弦波叠加而来的。 比如这个红色信号,我们就可以看作是多个蓝色
[测试测量]
浅懂<font color='red'>示波器</font>FFT快速傅立叶变换功能及运用
示波器为什么那么贵?
等有时间从内到外系统详细的说说示波器的构造原理,就知道为啥那么贵了. 现在开始,我感觉关注这个问题的都是硬件相关的人,所以讲的比较具体,闲麻烦可以只看每段的最后一句话: 首先,做硬件,几千上万都便宜的很了。。。要讲示波器为啥那么贵,就要介绍一下示波器,在介绍示波器之前,就要先了解一下示波器是用来干什么的,当然是用来测波形的,,,这里,波形我们可以人为的分为两类:高速信号和低速信号(具体怎么分析信号,另一个话题了,很庞大)。 我们计划买一台示波器的时候,首先应该是从需求出发,即我们想要测什么样的波形。这里就引出了整个信号设计及验证过程中最重要的一个概念:带宽。也就是我们平时在不停BB的,这个信号是多少M的多少G的频率(频率!不
[测试测量]
<font color='red'>示波器</font>为什么那么贵?
示波器电源测试的几个步骤
  过去大家习惯用万用表进行电源测试,如果测试参数很多的时候非常麻烦。而现在使用示波器提供了许多自动测量功能,可以使用这些功能简单实现幅度测量(幅度、高、低、最大值、最小值、RMS、峰到峰值、正/ 负过冲、平均值、周期平均值、周期RMS)、定时测量(周期、频率、上升/ 下降时间、正/ 负占空比、正/ 负脉宽、突发宽度、延迟、相位)、综合测量。在实践中,很多工程师对于利用示波器进行电源测试的要点并不是很清楚,这里零星总结一些步骤和要点供大家参考。(这里的陈述是根据本人所使用的泰克混合信号示波器MSO4000系列(MSO4034)以及泰克的探头配置,不同示波器和探头会有些差异)   选择示波器的几个要点   1. 记录长度及分析工具
[电源管理]
泰克示波器基础(二)丨为什么信号完整性是一个问题丨
让我们看一下当前数字设计中信号劣化的部分具体成因。为什么现在这些问题比过去几年盛行得多了呢?答案是速度。在“低速的旧时代”,保持可以接受的数字信号完整性只需注意细节就可以了,比如时钟分配、信号路径设计、噪声余量、负荷影响、传输线效应、总线端接、解耦和配电。所有这些规则仍然适用,但是今天,总线周期时间比20年前快了100倍!过去需要几微秒的事务处理现在只需要几纳秒。为实现这种改进,边沿速度也已经加快,其比20年前快了100倍。 这一切还好。然而,某些实际物理状况使得电路板技术不能跟上发展步伐。芯片间总线的传播时间在过去几十年中几乎一直没有变化。当然,其尺寸已经缩小,但仍需要为C器件、连接器、无源器件、当然还有总线轨迹本身提供电路
[测试测量]
泰克示波器10个鲜为人知的功能,你都了解么?(上)
泰克示波器在工程师中应用非常广泛,据不完全统计,全球每10个工程师中就有8个信赖泰克。泰克自1946年开始一直不断创造神话,到今天依然不断给众人惊喜,那么泰克示波器隐藏的功能你都会用了么? 工程师经常利用示波器观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。 无论是电源、汽车、嵌入式设计还是射频行业,泰克示波器在不同行业中的关键测试扮演着重要角色。在提供准确测试数据以外,泰克示波器还具有10个鲜为人知的独特功能。这些功能可以帮助您提高测试精度,更好的观察图形,更便捷的提交报告……泰克示波器帮您“剑走偏锋”,在追求速度的科技市场竞争中迅速取胜。 特异功能1:
[测试测量]
泰克<font color='red'>示波器</font>10个鲜为人知的功能,你都了解么?(上)
小广播
最新测试测量文章
换一换 更多 相关热搜器件
随便看看

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved