如何使用频谱分析仪来侦测微波炉泄漏的功率

发布者:JoyfulMelody最新更新时间:2023-03-14 来源: elecfans关键字:频谱分析仪  微波炉  泄漏  功率 手机看文章 扫描二维码
随时随地手机看文章

大家使用微波炉的时候是不是都会站得远远的? 这不外乎就是怕自己的身体被微波炉电磁波 照到,影响身体健康,其实阿信助教也不知道微波到底会不会影响身体健康,因为坊间的数据几乎都是有默认立场的,要嘛卖东西、要嘛就是纯环保团体,总之我目前无法针对微波与健康的关系做评论,各位就不要再问我了,我不是健康专家,但我可以测量微波炉泄漏的功率给大家看。


测量微波炉电磁波 的准备

为了做这个测试,我去弄了一个二手的微波炉,并在它的正前方放一个2.4GHz的Wifi天线,用来收微波炉泄漏的电磁波,因为微波炉的频率就是在2.45GHz,另外我还准备了一台频谱分析仪,这样才能把收到的讯号送进频谱分析仪里面观察,各位就可以在仪器的屏幕上看到泄漏出来的电磁波功率。


下图就是整个量测系统接好的样子,黑色的仪器称为频谱分析仪,白色的是微波炉,中间的Wifi天线会把收到的讯号,接入频谱右下角的输入端。你在频谱的画面上会看到一根凸起的讯号,就是目前收到的电磁波,但妙的是我的微波炉根本就还没开电,那么这跟讯号到底是打哪来的呢? 经过一番测试比对,原来目前这根讯号是我的无线麦克风所发出来的,而且它似乎会自动找一个较为安静的频道来使用,免得被干扰。

929158b2-333b-11ed-ba43-dac502259ad0.jpg

微波炉电磁波的量测环境

微波炉电磁波的泄漏程度

最直接的量测方式就是把微波炉打开,用频谱看看有多少功率跑出来,也就是像下图这样的量测方式,这是非常直观的,左边的微波炉上电运转之后,由右边的频谱分析仪来侦测微波炉泄漏的功率。

92b61ada-333b-11ed-ba43-dac502259ad0.png

微波炉电磁波的泄漏侦测实验

但在做这件事情之前,我得先把一杯水先放进微波炉,因为微波炉内在运转的时候,里面不能是空的,否则能量没地方吸收,可能会打坏磁控管,所以我要放杯水进去,如下图。

92e900f8-333b-11ed-ba43-dac502259ad0.jpg

先放一杯水因为微波炉内不能是空的(图)

接着就把微波炉的电源打开,我只开了约10几秒而已,避免杯子里的水太烫,基本上只要能在频谱分析仪上看到功率讯号就可以了,如下图,有一根高高的讯号出现在频谱的画面之内,这个就是微波炉所泄漏的电磁波功率,经过计算这个功率大约为-20dBm。

930c349c-333b-11ed-ba43-dac502259ad0.jpg

微波炉电磁波功率大约为-20dBm

那么-20dBm到底是多少功率呢?在这里直接换算,-20dBm换算为瓦特Watt就是10万分之一瓦特,如果和40W的钨丝灯泡相比的话,微波炉泄漏出来的电磁波大约是40W钨丝灯泡的400万分之一,这个能量其实相当小,这还是在很靠近微波炉所测量的结果,如果距离更远,那么功率就又更低了。只是这么小的能量对于人体到底有没有影响呢? 这我也不知道,这需要非常大规模的长期实验才能知道,我不确定是否有人会做这样的投资与研究。

微波炉的隔离效果-放Wifi热点

接着我们来看一下微波炉箱体的隔离效果如何,测试的方法就是把手机开着Wifi热点并将它关进微波炉里面,这样手机就会持续的发送Wifi讯号,我们只要在频谱分析仪上观察Wifi讯号的强度就可以了,简单讲整个量测系统就是像下图这样子。

933da09a-333b-11ed-ba43-dac502259ad0.png

微波炉的隔离效果试验

当然你应该也发现了我还多弄了两台PC在附近,因为我要测试流量,它们全都和这台手机的Wifi热点联机,到时候我会跑Iperf来测试流量,这个概念很简单,就是要看看当我把微波炉的门关起来之后,流量会不会下降? 最后提醒各位,这个阶段的实验并没有要把微波炉上电,纯粹只是要看箱体的隔离度而已,所以只有放手机在里面喔,如果这时候把为波炉上电,我的手机可是会报销的。

开门时的Wifi频谱

首先来观察箱门打开时的频谱状态,由于Wifi讯号的变化很快,频谱分析仪必须要设定为Real time mode才能做实时的观察,我的手机目前使用的Wifi频道为Ch11,所以中心频率为2.462GHz,因此频谱分析仪的中心频率也必须要设定为2.462GHz,Span就开一个Channel的宽度也就是20MHz,你就会在下图中看到有一座浅蓝色小山丘,这就是Ch11的Wifi讯号,蓝色表示讯号在时间上的密度并不高,下方是频谱图Spectrogram,它的纵轴是时间,新出现的频谱会出现在第一条线,前一条频谱会往下挪,整个频谱图会慢慢往下滚动推进,让你清楚频谱在整个时间轴上的变化,目前来说由于尚未开始传送数据,所以Spectrogram呈现紫色表示能量密度很低。

93693138-333b-11ed-ba43-dac502259ad0.jpg

尚未传送数据的Wifi Ch11频谱

当我把两台PC的Iperf打开之后,它们两台PC之间就开始密集的传送数据,频谱上就会看到绿色的轨迹不断出现,表示能量密度突然变高。Spectrogram上也能看到一条条绿色的频谱往下推进,跟稍早之前的紫色相比,有很明显的视觉落差。提醒各位,数据传送这件事情不见得要用Iperf实现,你用FTP或网络芳邻传个很大的档案也能达到相同效果。

9398cbbe-333b-11ed-ba43-dac502259ad0.jpg

Wifi开始传送数据的频谱与Spectrogram

关门时的Wifi频谱

趁着数据传送得如火如荼的时候,我突然间就把微波炉的门关起来,这时候你就会发现频谱突然消失,Spectrogram上也突然间回到紫色的状态,这表示Wifi讯号是真的有被阻隔掉的,所以证明了微波炉的箱体是确实有隔离效果的,但如果要很精确的测量箱体的隔离度是多少dB,以我目前的设备是办不到的,而我也没打算要测量到这么精准,我只是测好玩的而已。

93be54ba-333b-11ed-ba43-dac502259ad0.jpg

箱门突然关起来时,频谱也应声消失

来看流量怎么说

那么在微波炉箱门关起来的时候,Iperf呈现甚么数据呢? 请看下图,我原先预计传送30sec的封包,送到第10sec的时候,箱门关起来了,于是传输直接就停了,Client端完全认不到Server,因此出现Write fail的错误讯息,封包传送因此停止。而箱门还没盖上之前它传送的速度轨迹理论上应该要是偏向稳定的横线,但因为我手残有动到一些设定,所以让测试结果不是那么漂亮,因而呈现锯齿状,即便如此Iperf封包都还能传送,但只要箱门一关起来,则是怎么样都传不了。

93e5a736-333b-11ed-ba43-dac502259ad0.png

微波炉箱门关上后,传送被迫中断

微波炉的干扰

看来微波炉的箱体真的能够抵挡2.4GHz频段的Wifi讯号,根据第一个泄漏实验的结果,若一个500W的微波炉仅泄漏十万分之一瓦特的话,而我们在外部得到-20dBm的功率,那么我们可以推估这个箱体大约可以隔离75dB左右的能量。那既然隔离度不是无穷大,而是个有限的数值,那就表示无论如何电磁波一定会泄漏,只不过是程度的问题而已。

那我就很好奇了,这泄漏出来的电磁波到底会影响Wifi到甚么程度,所以我准备了下面这个实验,把手机从微波炉内拿出来放外面,另外两台PC一样传送Iperf封包,在此同时把微波炉的电源打开,我们来观察泄漏的电磁波对于Wifi有甚么干扰与影响,整个接线如下图,跟前一个实验相比,只有把手机拿出来而已。

942284e4-333b-11ed-ba43-dac502259ad0.png

微波炉会如何干扰Wifi运作

受微波炉电磁波 干扰的Wifi

微波炉上电之后,我们的频谱真的是好精彩啊,除了Wifi本身的讯号之外,还有微波炉的讯号来凑热闹,而且呢微波炉电磁波的频率还刚好跟Wifi Ch11重迭,于是乎整个频谱根本就是乱七八糟的,微波炉泄漏的电磁波正恣意的践踏Wifi讯号。各位在下图中可以看到Spectrogram的两侧仍有着整齐的绿色轨迹,这就是Wifi的讯号,但中间的部分则有着黑黑的影子,这是微波炉的电磁波讯号,虽然它只有十万分之一瓦特,由于它是单一频率且能量较为集中,于是能量就轻易的超出Wifi讯号许多,因此颜色呈现黑色,黑色在这里表示能量破表,而且微波炉的磁控管频率不稳定,因此随着时间的推进,黑色区域就会左摇右晃,就像是喝醉酒的人到处摇晃一样,而且还踩在Wifi的讯号上,于是就形成了各位看到的样子,我看这Wifi要传资料应该有难度。

944eaaec-333b-11ed-ba43-dac502259ad0.jpg

微波炉电磁波正在干扰Wifi的讯号

受干扰的传输速率轨迹

既然有传送Iperf封包,我们当然也要来看一下在微波炉干扰之下传输速率的变化。下图是微波炉的运作停止之后,Iperf的传输速率变化,你可以很明显的看出来,由于干扰的关系,左边的速率比较低,在第12秒的时候微波炉因为时间到而断电,所以干扰消失传输速率瞬间冲高,所以微波炉泄漏的电磁波对于Wifi是有影响的。但如果你的Wifi频道刚好不在微波炉的频率上,那么就不会有影响,例如你若用的是Wifi 5GHz,这和微波炉的2.45GHz差很多,则完全不会有影响。

9481b086-333b-11ed-ba43-dac502259ad0.png

微波炉断电后传输速率瞬间冲高

灯泡放进微波炉

刚才我们都是用仪器测量微波炉泄漏的电磁波,但可惜的是以我目前的设备无法测量微波炉内的功率,由于里面的功率实在太高,我如果把Wifi天线放进去的话应该会在微波炉内直接报销,所以我决定用一个超级不精准但很有视觉效果的做法,就是把灯泡放进微波炉内。

94c8c2be-333b-11ed-ba43-dac502259ad0.jpg

把灯泡放进微波炉内

金属可以放进微波炉吗?

欸! 所有的微波炉说明书不是都告诉我们不可以把金属放进微波炉吗? 所以助教您是ㄎ一ㄤ掉了吗? 非也,我敢这么作当然是有我的理由。首先,微波炉内磁控管所产生的强大磁场,会在金属表面产生涡电流Eddy current,当这个电流大到一个程度,金属就会发热发红,以灯泡的构造来说,钨丝和灯座都是金属的,但钨丝很细电阻较高,灯座金属面积大电阻较低,因此钨丝较容易产生高温甚至发红,我就是要里用这个原理来证明微波炉内的电磁波真的是超强,连灯泡都会亮,而灯座的金属虽然也会升温但还不至于发红,毕竟它面积大散热较快速,如果磁控管的功率再提升的话,我想连灯座的金属应该也会发红。

那为何说明书都不希望我们放金属进微波炉? 因为虽然强大的磁场会让金属表面产生涡电流,但那只是占一小部分的能量,这些能量会穿透金属,而且还穿透得挺薄的,也就是所谓的集肤效应。金属对于电磁场来说,是不折不扣的镜子,所以绝大部分的电磁波会在箱体内的金属之间来回反射,如果内部没有放个食物或水之类的东西来吸收能量,你的箱体内部就有机会被烧出一个洞来,这就是为甚么我要把灯泡放在水里面的原因,一方面吸收灯座金属升温的热量,一方面吸收电磁波的能量,虽然这微波炉是二手货,我还是不希望它坏掉。

灯泡真的放进微波炉

最后我真的要把灯泡放进微波炉内的转盘了,为了做对照组,我在箱门外面也贴了一个同款的灯泡,然后上电观察,如下图所示。箱内的灯泡并非在所有的位置都会亮,仅在转盘转到某些特定位置的时候会亮,因为箱体内部由于电磁波反射的关系,会在箱体内部产生驻波,若灯泡刚好位在波峰,那么灯泡的钨丝就会亮,若灯泡远离波锋,钨丝就会变暗。

94fe515e-333b-11ed-ba43-dac502259ad0.jpg

钨丝灯泡在微波炉内发亮

各位若经常使用微波炉,应该会发现微波加热过后的食物,经常发生冷热不均的情况,这就是因为驻波的波峰与节点都是固定的位置,即便是有转盘也只是尽量让食物加热均匀,仍不免会有漏网之鱼,这样以后各位在使用微波炉的时候,就不要太计较受热不均的情况了。


关键字:频谱分析仪  微波炉  泄漏  功率 引用地址:如何使用频谱分析仪来侦测微波炉泄漏的功率

上一篇:同惠TH2638A高速精密电容测量仪应用于新能源汽车
下一篇:矢量网络分析仪的误差来源于哪里

推荐阅读最新更新时间:2024-11-02 10:33

数显功率因数表的原理
数显功率因数表作为新一代可编程智能表,主要用于对单相或三相用电线路中的率因数、相位(率因数角度)值进行实时测量与指示,并通过RS485接口或模拟量变送输出接口对被测电量数据进行远传。通过仪表键盘可非常方便地实现对仪表的上下限值(或范围)及切换差、通讯地址及通讯波特率、变送输出方式及变送输出范围、数字滤波系数等参数的设置。具有测量精度高、稳定性好、长期工作免调校、可通过面板按键现场设置参数等特点,是原指针式率因数、相位表或普通数字式率因数、相位表的理想换代产品。 功率因数是衡量电气设备效率高低的一个系数。功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路的供电损失。功率因数过低可导致电压崩溃、电
[测试测量]
数显<font color='red'>功率</font>因数表的原理
静电除尘用大功率高压电源相位跟踪的研究
0 引言 为了减少大型工厂烟囱烟尘的排放,我们研制了大功率高压电源对工厂烟囱进行静电除尘。传统的高压电源有两种制作方法。 1)直接对市电升压,然后整流、滤波,这样制作的高压电源效率低,占地面积大,成本高。 2)采用AC/DC/AC/DC变换,利用改变频率的方法来改变电源的功率。这种方法解决了电源小型化的问题,降低了成本,但由于用于静电除尘的两个电极板随着烟尘吸附的多少而改变了电容介质,因而改变了负载的谐振频率。若逆变器的工作电压不变,则在谐振点附近的输出功率最大,当改变逆变器工作频率时,负载等效阻抗发生变化,输出功率减小,而且逆变器主开关管工作在硬开关状态,开关损耗大,效率低。 为了提高效率,减少开关损耗,所研制的高压逆变电源
[手机便携]
频谱分析仪在RFID和NFC的测试测量应用
  RFID系统、特别是带有反向散射无源终端的RFID系统,给测试和诊断带来了独特的挑战。定时测量是尤其要注意的一个问题,因为它可能要求系统阅读器,非常迅速地、无差错地从多个终端中读取ID数据。   大多数RFID系统采用瞬变时分双工(TDD)方案,其中询问器和终端依次在同一条信道上通信。为使用串行TDD复用方案在非常短的时期内读取多个ID终端,标准要求非常精确的定时。因此,数据交换上的定时测量带来了独特的RFID挑战。瞬变RFID信号通常包含频谱效率低下的调制,其采用专用PCM符号编码和解码。调试接收这些异常信号的零差询问器或终端要求特殊的信号分析仪功能。传统上,扫频分析仪、矢量信号分析仪和 示波器 一直用于无线数据链路开发
[测试测量]
爱立信总线转换器针对峰值功率需求升级包含突发模式功能
• 第三代BMR458 1/4砖高级总线转换器升级为提供突发模式功能,并能在一秒钟内处理1079W功率 • 新功能不再需要并联第二个转换器模块 • BMR458可为各种信息与通信技术(ICT)应用提供高达650W功率 • 旨在满足基于中间总线转换(IBC)和动态总线电压(DBV)架构的高端和大功率应用所需 爱立信电源模块今天宣布,其BMR458第三代3E* 1/4砖高级总线转换器获奖产品现已升级为集成突发模式工作,这使该模块能够在最高一秒钟的短时间内处理1079W的峰值功率。 越来越多的高性能微处理器和ASIC会提出提供短时突发大电流的需求,这通常远远超出正常系统工作所需。重要的是,这种突发模式或峰值功率功
[电源管理]
TriQuint推出集成式多频带多模式功率放大器
TriQuint半导体公司,今天宣布推出一款多频带、多模式的功率放大器(MMPA)---TQM7M9053,能简化用于下一代全球3G / 4G智能手机和其他移动设备日益复杂的射频前端。这个紧凑、高度集成的TRIUMF™多频多模功率放大器实现了业界最佳的功率附加效,提供多达15%以上的浏览时间。 “随着LET网络的推行,新一代的智能手机将有越来越多的频段。这意味着设备生产商必须在非常小的体积之内,并且不牺牲性能的情况下,提供解决方案以支持快速增长的射频内容,”TriQuint移动设备全球营销副总裁Shane Smith先生解释说。“我们的客户证明我们新的TRIUMF TQM7M9053 MMPA最适合这些苛刻要求的应用。该集成解决
[网络通信]
TriQuint推出集成式多频带多模式<font color='red'>功率</font>放大器
纳微半导体-威睿联合实验室开幕,专注研发新能源汽车新型功率半导体应用
加利福尼亚州托伦斯,2022 年 11 月 4 日讯:唯一全面专注的下一代功率半导体公司及氮化镓功率芯片行业领导者—纳微半导体已正式宣布与威睿电动汽车技术(宁波)有限公司联合打造的新型研发实验室正式揭牌,凭借旗下领先的GaNFast™氮化镓功率芯片和GeneSiC™碳化硅功率MOSFETs及二极管,进一步加速电动汽车电源系统的发展。威睿是极氪、沃尔沃、极星和路特斯等知名汽车品牌的一级动力总成供应商。 众所周知,宽禁带半导体——氮化镓与碳化硅能够在极高的快关频率下,带来更高的效率,并且拥有着更小的系统尺寸及低于传统硅芯片的成本。这些显著的优势可赋能电动汽车的电源转换系统,让电动汽车具备更快的充电速度、更强的加速能力、更高的续航表
[汽车电子]
功率高压变频器的散热分析
变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。随着现代电力电子技术和微电子技术的迅猛发展,高压大功率变频调速装置不断地成熟起来,原来一直难于解决的高压问题,近年来通过器件串联或单元串联得到了很好的解决。   变频器在高温下的注意事项:   1、 认真监视并记录 变频器 人机界面上的各显示参数,发现异常应即时反映   2、 认真监视并记录变频室的环境温度,环境温度应在-5℃~40℃之间。移相变压器的温升不能超过130℃   3、 夏季温度较高时,应加强变频器安装场地的通风散热。确保周围空气中不含有过量的尘埃,酸、盐、腐蚀性及爆炸性气体   4、 夏季是多雨季节,应防止雨水进入变频器内部(例
[嵌入式]
MSO 4B 示波器为工程师带来更多台式功率分析工具
持续测量 AC-DC 和 DC-DC 转换器的性能可能是一项极具挑战性的任务。 随着设计师努力从硅基电源转换器过渡到碳化硅 (SiC) 和氮化镓 (GaN) 等宽禁带半导体,这些挑战变得尤为棘手。电机驱动器等三相系统的设计师面临更多复杂问题。 值得庆幸的是,他们可以借助最新款台式示波器。此款示波器提升了电源和电机驱动器的分析处理能力和速度,所用软件让工程师能够进行速度更快、更可重复的测量。 功能更加丰富的泰克示波器 泰克 4 B 系列 MSO 就是这样一款示波器,它配备更强大的处理器,可加快电源转换器设计师的分析速度。此款示波器采用全新用户界面,与上一代示波器相比,响应速度提高了一倍,测量速度也显著提升。此外,此款示波
[测试测量]
MSO 4B 示波器为工程师带来更多台式<font color='red'>功率</font>分析工具
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved