您了解您的信号源和示波器吗?上期我们主要分析了示波器触发的基本概念以及作用和分类,本期我们分享示波器触发源和耦合以及存储的关系:
触发源和耦合
触发源:通过图1可以看到,触发电路与被测信号处理电路是并行结构,所以触发电路并不会影响到被测信号的数字化处理,那就决定了触发信号不光可以从被测信号引入,还可以通过其他通道、外触发通道等引入。当被测信号过于复杂或者没有特定的特征时,我们无法通过被测信号来完成触发,这时就需要其他触发源来完成触发。
如:一组成分十分复杂的信号,其周期和特征都不明显,触发条件无法设置,这时就可以通过信号源产生一个触发信号来完成触发并显示。
触发耦合:当触发源引进的触发信号存在很多干扰和噪声的时候,我们就要通过触发耦合来净化接收的信号。使触发电路能够完成预期的工作,不出现误触发。
下表给出了一种示波器的触发偶合的方式和作用,其他种类不尽相同。注意触发耦合与垂直通道偶合有本质区别,垂直耦合将影响到被测波形。
Tektronix公司的TDS3000B系列示波器的触发耦合方式
2.触发与存储
传统的模拟示波器由于没有存储单元,触发只是示波器显示波形的一个起始信号,单单定义了波形的起点。但是新一代的存储示波器由于把模拟信号数字化,并且存储到内存之中,触发作为一个定义点也同样被存储到内存,这种模式就决定了可以把触发点放到内存中的任意一个位置。有了这个特性我们就可以看到触发之前的波形,也就是我们所说的预触发。
通过上图可以看到被测信号不断地被引进到示波器,这些数字化的信号遵循先进先出的原理存储到示波器内存中去的。一般的示波器的存储长度都是一定的。当在存储器中定义了触发点的位置后,当波形点满足了触发条件,该点就被固定在存储器定义的触发点上了,这时还要参考一个参数就是触发延时,它规定了触发点到起点的时间距离,是我们事先定义好的,存储器的起点也就固定下来,这时示波器存储器变成了只进不出,后进来的信号直到填满存储长度为止,存满后再重新刷新。
如果是单次捕获就只存储刷新一次。很容易看到存储器起点到触发点这段时间记录的波形数据就是触发前的波形信息,我们称之为预触发。而触发点到存储器终点的波形称之为后触发。
当我们充分利用好触发与存储长度,就可以分析故障的原因和结果。
例:一个串行处理过程如下图,在第四个单元输出端总在一段时间出现一个跳变的错误信号,但检查输出单元电路没有发现问题,怀疑是前端某个单元出现问题,检查。
把输出端信号接到示波器2通道,把中间环节一单元存储信号接到示波器1通道,以输出端2通道的跳变信号作为触发条件进行单次触发,得到下图:
我们发现:每当中间环节一的信号出现了一个毛刺错误信号,总是伴随着输出端的错误跳变,我们找到了事件原因,问题出现在中间环节一。这是一个应用预触发的很好例子。
通过上面例子,我们可以看到:触发配合存储器一起正确运用,可以分析事件的原因,也可以找到事件的结果。认真分析您要测量的信号,灵活运用触发和存储,才能更快更好的解决您所面对的问题。
综上所述,要利用示波器准确测量信号首先就需要了解具体信号的特征以及需要触发信号的条件。
关键字:示波器 触发源 耦合 存储
引用地址:
示波器触发源、耦合与存储之间存在着怎样的联系
推荐阅读最新更新时间:2024-10-18 18:36
示波器触发源、耦合与存储之间存在着怎样的联系
您了解您的信号源和示波器吗?上期我们主要分析了示波器触发的基本概念以及作用和分类,本期我们分享示波器触发源和耦合以及存储的关系: 触发源和耦合 触发源:通过图1可以看到,触发电路与被测信号处理电路是并行结构,所以触发电路并不会影响到被测信号的数字化处理,那就决定了触发信号不光可以从被测信号引入,还可以通过其他通道、外触发通道等引入。当被测信号过于复杂或者没有特定的特征时,我们无法通过被测信号来完成触发,这时就需要其他触发源来完成触发。 如:一组成分十分复杂的信号,其周期和特征都不明显,触发条件无法设置,这时就可以通过信号源产生一个触发信号来完成触发并显示。 触发耦合:当触发源引进的触发信号存在很多干扰和噪声的时候,我们就要
[测试测量]
示波器触发源与耦合以及存储的具体关系有哪些?
您了解您的信号源和 示波器 吗?上期我们主要分析了示波器触发的基本概念以及作用和分类,本期我们分享示波器触发源和耦合以及存储的关系: 触发源和耦合 触发源:通过图1可以看到,触发 电路 与被测信号处理电路是并行结构,所以触发电路并不会影响到被测信号的数字化处理,那就决定了触发信号不光可以从被测信号引入,还可以通过其他通道、外触发通道等引入。当被测信号过于复杂或者没有特定的特征时,我们无法通过被测信号来完成触发,这时就需要其他触发源来完成触发。 如:一组成分十分复杂的信号,其周期和特征都不明显,触发条件无法设置,这时就可以通过信号源产生一个触发信号来完成触发并显示。 触发耦合:当触发源引进的触发信号存在很多干扰和噪声
[测试测量]
示波器的触发源和触发方式
Q: 示波器有哪几种触发方式?如何设置示波器的触发源和方式? 被测信号从示波器的Y轴输入后,一部分送到示波管的Y轴偏转板上,驱动光点在荧光屏上按比例沿垂直方向移动;另一部分分流到x轴偏转系统产生触发脉冲,触发扫描发生器,产生重复的锯齿波电压加到示波管的X偏转板上,使光点沿水平方向移动,两者合一,光点在荧光屏上描绘出的图形就是被测信号图形。由此可知,正确的触发方式直接影响到示波器的有效操作。为了在荧光屏上得到稳定的、清晰的信号波形,掌握基本的触发功能及其操作方法是十分重要的。 1.触发源(Source)选择 要使屏幕上显示稳定的波形,则需将被测信号本身或者与被测信号有一定时间关系的触发信号加到触发电路。触发源选择确定触发
[测试测量]
示波器触发源如何选择,触发的作用是什么
在“浅谈模拟示波器触发模式和功能”中我们了解了众多关于模拟示波器的触发模式,在这一篇,我们就来了解一下关于示波器的触发源,以及触发的作用 什么是触发 触发就是在使用示波器时,为了使扫描信号与被测信号同步,我们可以设定一些条件,将被测信号不断地与这些条件相比较,只有当被测信号满足这些条件时才启动扫描,从而使得扫描的频率与被测信号相同或存在整数倍的关系,也就是同步,这些条件就是触发条件, 如致远电子ZDS2024Plus示波器标配了22种协议触发,可以根据我的需求来设置触发方式。 触发的目的是为了每次显示的时候都在波形的同一位置开始,波形可以稳定显示。一般模拟示波器有边沿触发、视频触发和市电触发,在数字示波器上有了更多的触发
[测试测量]
简单双通道示波器VI控件的触发源功能块选择
触发源功能块的作用主要是利用触发源开关的选择和通道选择开关完成对示波器显示波形的触发源的选择问题,如图所示。 图 触发源功能块设置 触发源 Source 开关和通道选择开关 Select Channel 选择通过And逻辑操作后作为分支选择结构(case-switch)的选择项,若选择结果为真,此时触发通道B,将逻辑选择数值 0 作为触发源 Source ,触发极性 Slope 不口触发电位 Level 属性引用节点的设置数值,打开后两者的功能。如果case选择情况为后者,即采用外触发 EXT ,此时将逻辑选择数值 2 作为逻辑数值输入触发器面板3个控件的属性节点后,使得触发极性和触发电位取消作用。
[测试测量]
用DSO112触屏示波器测量电源纹波
做电源的经常要测量电源的纹波,112示波器灵敏度比较高,对于工作频率在1MHz以下的电源纹波可进行有效测量,下面是简单介绍一下一般观测纹波的方法。 拿一个现成的电源做例子,下图是被测试的电源,输出参数是9V 1A。 先测量空载的纹波,下图是连接方法。 下图显示电源输出的直流电压,9V多不到10V,当然这里是看不到纹波的。 因为纹波很小,又叠加在幅度大很多的直流上,所以要先将直流去掉,为此将示波器的耦合改为AC,即交流耦合;同时将灵敏度加大,下图是将灵敏度调到5mV/格,将时基调到2us/格,可以清楚看到纹波,右下方的峰峰值显示纹波的峰峰值大约是11mV,这是空载的情况。 将时基改为1us/格,波
[测试测量]
示波器测ipad触屏数据线高频长串方波脉冲变成了锯齿波?
有位深圳福田华强北的工程师是专门研发生产屏幕的,需要用示波器测量出苹果平板电脑 ipad 给屏幕上电时的一串脉冲信号,示波器捕捉下来后,他就可以对照着模拟出这段信号。但是这位朋友测了好几次都不成功,或者对捕捉到的信号不满意,因此他特意带着他的麦科信平板示波器和其他相关设备来上门咨询了。 首先他演示了一遍他的测量方法,他一共需要测量三路信号,分别连接了示波器的三个通道。当通道三上电产生一个直流电时,通道一和通道二就会分别产生一段脉冲正负间隔并且脉宽有差异的信号,而他需要观察的就是通道一的脉冲变化规律,以此作为依据做出模拟。 通道三产生的直流电在二点几伏,通道一和通道二的脉冲在±500mV 以内。因此他把通道一和通道二的垂直档
[测试测量]
存储器 大摩:NOR Flash价格Q4或触顶
继8月“存储器寒冬说”后,摩根士丹利周一(18日)发布报告再次唱衰这一市场,认为NOR Flash价格可能会在第四季度触顶,因此将兆易创新、旺宏、华邦电等供应商评级下调一个层级。 综合台媒报道,报告指出,消费电子需求疲软,美国NB库存持续增加,PC及电视需求放缓,尤其是在中国,今年全年电视出货量可能会同比下降2位数,第四季度NOR Flash上行空间有限,预计2022年供需将更加平衡,第一季度定价将较上一季度持平至下跌。 供应方面,虽然预计中国产能近期不会显著增加,但认为兆易创新从65nm制程转向55nm制程的速度会更快,预估目前渠道库存为4-5周,较1个月前的3-4周有所增加。 据此分析,大摩下调所有NOR Flash供应商平等
[手机便携]