如何选择一个示波器,有哪些隐藏参数需要注意

发布者:数字冒险最新更新时间:2023-10-04 关键字:示波器  采样率 手机看文章 扫描二维码
随时随地手机看文章

市场上如此多种类的示波器,该选择哪一款呢?示波器的广告宣传中,往往会凸显带宽和采样率两个非常重要的参数。但是,还有哪些隐藏在说明书中的参数需要我们关注呢?


选择示波器的时候,我做了详细的记录,这里想跟大家分享一下,我是如何选择一台示波器的!我研究了市场上几个品牌的示波器,最后,选择了一款Pico示波器,所以,相对于其他示波器,我将会重点介绍这款示波器。但是,内容可能有些简单,因为我没有太多的示波器,所以不能将拍成照片放在文章中。我也不是Pico的员工,在这里我会尝试着放以一些其他有这个系列产品的供应商的例子来保持平衡。


这个系列由四个专题组成。下次专题二,我在讨论宽带和采样率。本次专题一将介绍示波器的物理特性:台式示波器和PC示波器的探头类型和数字输入。下一次,我将会讨论示波器的核心参数,像带宽、采样率、模数转换的分辨率。之后,我将会介绍运行在示波器上的软件和一些细节,比如远程控制,快速傅立叶变换(FFT),数字解码和缓存。最后,将会介绍其他的一些参数,像外部触发和时钟同步,还有总结一下我已经介绍过的示波器参数。


Ⅰ:如何选择一个示波器?先谈谈示波器的物理特性

一、你是想要PC示波器的还是台式示波器?

这是两种不同的设备类型,可根据需要去选择示波器的类型。很多人喜欢用台式示波器,因为它可以直接放在试验台上测试电路信号,而不需要配置一台电脑才能使用。也有人喜欢PC示波器,通过USB来连接到电脑上使用。我一直以来都比较喜欢于PC示波器。首先是它只需要占用很小的地方,例如,我可以将示波器垂直地放在桌子,这样就可以节省了一些地方(如图1所示)。


我喜欢PC示波器的另一个原因是,它能够用电脑的键盘和鼠标来设置示波器,尤其是在用高级触发时,键盘和鼠标更加方便。另外,当你想要进行屏幕截图或者存储数据时,直接在用鼠标在电脑上操作就行,而不必先保存在示波器内,然后再通过一个U盘或者其他类似设备将其拷贝到电脑上。


当然USB示波器也有一些缺点。人们抱怨最多的可能就是没有按钮控制功能,不过这个也是很容易解决的。


图2中你可以看到USB的“旋钮板”,那是我自己做的。旋钮的每次旋转都会发送一次“键击命令”,只要你的PC示波器激活自定义快捷键、改变输入范围和时基等功能。一般情况下,我还是用键盘和鼠标,因为我发现有时他们比旋钮好用。如果你喜欢这个设计,你可以在我的博客上找得到。


拥有一款PC示波器也意味着你能够拥有一个大尺寸的屏幕。一款高端的示波器可以在12.1英寸的屏幕上显示,但是你可以用200美元或者更低的价格为你的电脑购买一个22寸的显示屏来显示波形。如果你的示波器的软件支持多个窗口的话,那你就可以像图3中那样来设置多个显示界面。

图3 软件显示多个窗口

对于我个人来说,我更加喜欢我的电脑上一次只显示一个界面。当然,如果你不想用你的电脑来配套示波器使用的话,这时你也许需要的就是一台台式示波器。


二、地线在哪里?

对PC示波器,人们抱怨最多的是它探头的地线跟USB的地线是连接在一起的!所以你需要确保在测试时,PC示波器和电脑的地线间没电压差。


其实,大多数示波器在进行测试时都需要考虑这个情况,不管台式示波器还是PC示波器。如果你用欧姆表来检测一下,你会发现那个 “探头地线”实际上也是和台式示波器的系统地连接在一起。至少我曾经测试我购买的几台其他品牌的示波器,都是这样的情况。因此对PC示波器存在抱怨是不太公平的。


你也可以选用差分或者隔离示波器,他们主要用来消除在不同输入端之间的接地回路问题。他们也能给您更多的测量灵活性。比如说,如果你想要测试经过“高侧分流电阻”的电压,你就可以用差分示波器来测量了,TiePieHS4 DIFF差分示波器就可以实现这种测量。当然,你也可以给普通单端示波器购买差分探头,同样可以实现差分测量。大多数的供应商都制作这样的探头(安捷伦、泰克、PicoTech和Rigol等)。


三、输入信号类型

几乎所有的示波器都有直流耦合和交流耦合的输入,你有时可能想要去对比示波器的最小量程和最大量程。其实,不要太过考虑那些所谓的上限和下限,除非您有很特殊的要求。当您考虑示波器的最大输入范围时,请记住你很有可能需要用到10:1的探头,这就意味着一个有±20V的输入范围的示波器可以在10:1的探头的帮助下变成范围为±200V。


当考虑示波器的最小输入范围时,噪声是完全可以让你抓狂的!例如,示波器有一个1mV/div的范围,那么你就必须要考虑噪声的影响。测量一个非常小的信号时,一般不要在测量端使用有源探头。比如,你想要测经过分流器的电流的时候,是完全可以用差分放大芯片自己动手制作一个。


除了真正的测量范围,你可能也会对“偏置范围”感兴趣。在DC耦合时,大多数示波器都能够去掉一个固定的电压(用偏置功能)。例如,你可以在一个最大1.0V的输入范围下测试1.2V的输入电压,因为示波器是可以先将信号上减少1V。当然,当你需要在一些固定的电压上去掉更小的信号时,将会更加方便。


另一种常见的输入类型是50Ω阻抗输入。正常情况下,这就意味着示波器可以在AC、DC和DC50输入类型间切换。DC50的意思就是输入是有50Ω的阻抗的。一般用到更高模拟带宽的示波器上有这个功能。例如,它可以测量一个50Ω阻抗SMA连接器端输出的时钟信号。另外,50Ω的输入阻抗可以简化示波器与其他的实验仪器进行连接的步骤(不用额外配置1MΩ转50欧阻抗转换器)。如果你也想要用一个低噪声的放大器去测量一个非常小的信号,那也是没有问题的,因为你可以准确地将低噪声放大器的输出关闭。


如果你最后需要DC50的终端,你可以购买一个50Ω的直通端子,最高配套1GHz 带宽的示波器使用。可以直接连接在示波器前端,从而获得50Ω的输入阻抗。


一个大型的示波器公司往往会有不同带宽、不同输入范围,不同型号的产品。比如说,Pico5000系列最高带宽200MHz, DCAC高阻抗输入。Pico6000系列的示波器500MHz带宽及其以下的型号输入类型有DCACDC50。6000系列1000MHz带宽的示波器下只有50Ω的输入阻抗。其他的供应商几乎也是这样:在最高的带宽下也是有50Ω的输入阻抗,中等带宽的示波器有DCACDC50三种输入类型,低带宽示波器只有DCAC模式。


四、探头的质量和类型

在日复一日的使用中,没有什么东西能够跟你的示波器的探头质量那样影响着你。这是你与示波器的互动桥梁。


大多数“标准”的示波器探头是跟图4中的照片一样的。


它们是可调档位从1:1到10:1的衰减,10:1是对输入信号衰减10倍。值得注意的一点是,在1:1的模式下,大多数的示波器拥有非常有限的带宽—一般是小于10MHz。然而在10:1模式下可能会有300MHz的带宽!另外,10:1模式下的负载更小。更高带宽的探头通常只有10:1模式。我猜想是因为高频时,频繁的切换探头衰减档位会损坏。


首先要检查的是探头的顶尖是否是可以移除的。如果你弄坏了顶尖,它是很方便的换一个顶尖,而不是把整个探头都更换了。如果你是在探测一个PCB板,它可以很容易探测测量点。当然,一般的探头都会有一个适配器,用于专门测试PCB的,而不是只有一个探头尖端。老款的安捷伦的1160A探头就是有这样一个尖端。


我很喜欢的一款是带弹簧夹的探头(图4中)。它的尖端比标准探头小一些,弹簧支撑的作用让它更加容易地与焊接接头相连。你可以使用一些力气来戳穿氧化层,弹簧支撑的器件可以让你准确地触摸到接头。另外,你甚至可以这样做—将探头穿过焊锡表面。它上面也有一些塑料的防护层,这些可以将标准的接口器件规格(例如1.27mm,1mm,0.5mm,0.8mm)加到TQFPSOICTSSOP封装形式的探头。


图4是Pico6000系列标配的探头,可以有通过型号区分:TA150(350MHz带宽)或者TA133(500MHz带宽)。但是我要说明的是,安捷伦也在卖一款同样的探头—型号为N287xA—作为一种附件。相似的,力科也在卖类似的探头—PP007,罗德与施瓦茨也卖类似的型号—RTM-ZP10,同样也有相似的附件。但是我怀疑他们的探头出来自同一个供应商。根据你自己的需求和选项,如果你单独地订购这些探头的话,它的价格在$200到$400之间。


Pomona Electronics 也在卖同样的探头,型号为6491到6501(不同的型号,带宽不同)。一款150MHz(6493)的探头,它在Digi-Key、 Mouser 和Newark element14上售卖也就几十到一百美元。这个探头是跟一开始的弹簧式的不同的,但是如果你对带宽的要求不高的话,可以选择购买它。


如果你在使用一个高带宽的探头的话,那你要关心的是频率响应的平滑度。一个探头标称带宽1GHz,电压幅值在1GHz时会下降3dB。但是无良商家制造的产品不会有一个非常平滑的频率响应或者在-3dB点处没有下滑。


在使用高带宽的探头的时候,接地将会是非常的重要的一个问题。经典的鳄鱼夹也许不会消失!一个最简单的附件是跟在图5中显示的那样的。也许会有更多更加适合的可用的接地的配件,这些可以查一下探头自带的一些说明文件。


不要担心不能为你自己的探头配置附件。图6中显示的探头支架是我用一个可调的机械手制作的。


五、数字输入

最后,讲一下混合数字示波器,即,同一款示波器既有模拟通道,也有数字通道。这里也是个人的选择:也许你会想要一个单独的数字分析仪,或者是你希望将它内置到你的示波器中。


我自己选择了一个基于PC的单独的数字逻辑分析仪。数字逻辑分析仪可以以一个比较低的价格从很多供应商那里购买。根据我的经验,跟一个不带逻辑分析仪的示波器相比,带有逻辑分析仪的示波器更加不划算。当你在评价它的时候,一定要看清楚通道数、最大采样率、缓存大小和逻辑分析仪能够解码的信号种类。


当一个系统集成商建议你买一个示波器和分析仪组合在一起的仪器来获得数字和模拟信号的同步的时候,请记住这些仪器的一般都是可以输出一个触发信号的。所以如果你的示波器在开始捕捉模拟信号时,可以产生一个触发信号,那么你完全可以在数字逻辑分析仪同步捕捉同步的数据(反之亦然)。


六、内容预告:示波器的核心参数

这次我主要介绍了选择一台示波器时,需要考虑到的示波器的物理特性。下次将更多的介绍示波器的核心参数,像带宽、采样率和分辨率等。


Ⅱ:如何选择一个示波器?讨论示波器的宽带和采样率

这是如何选择一个合适示波器专题系列的第二章,它不是一个完整的选型指南,而是我研究之后所做的总结。其中可能介绍到一些您不曾注意到的细节,希望对大家有所帮助。


第一章主要讲述了PC示波器和台式示波器的区别,同时讨论了示波器探头的主要特点。本章主要讨论一下示波器的核心参数:模拟带宽、采样率、AD分辨率。


一、模拟带宽

目前已经有太多的文章介绍模拟示波器的带宽,所以这里我不再花太多时间来介绍。简言之,带宽就是功率的一半或者-3dB幅度时的频率,如图1所示,功率一半也就是电压的1/ , 例如,用一个100MHz带宽的示波器采集一个10MHz,1V的正弦波,此时示波器采集到一个标准的正弦波。随着输入信号频率的增加到100MHz时,采集到的正弦波的振幅变为0.707V左右。

图7 带宽是功率一半或者-3dB时的频率。如果输入一个固定振幅的波形,增加信号频率,-3dB的位置即是示波器的电压幅值为实际幅值的0.707倍。


不幸的是,实际应用中我们很可能需要测量的是方波(例如数字系统)而不是正弦波。因为采集方波需要远高于基本波形的频率。最常用的原则是选择一个带宽是待测数字系统最高信号频率5倍的示波器。例如,一个66MHz的时钟信号需要一个330MHz带宽的示波器。


我用Python 脚本编写一个模拟滤波器,先对方波进行滤波,然后绘制出滤波结果。图2 显示了分别用一个50MHz, 100 MHz, 250 MHz,500 MHz 带宽对50 MHz方波信号滤波的结果。

图8 用一个50MHz, 100 MHz, 250 MHz,500 MHz 带宽对50 MHz方波信号采样的结果


二、采样率

除了示波器的模拟带宽外,采样率也是非常重要的参数。采样率的单位是MS/s(Megasamples per second)或GS/s(Gigasamples per second)。一般情况下,各个示波器公布的采样率参数都是指单通道最高采样率。如果一台两通道的示波器,公布的采样率参数为1GS/s,两个通道同时使用时,每通道的最高采样率为500MS/s。


所以,你需要多高的采样率?对奈奎斯特定律熟悉的人,可能简单的认为采样率仅为待测信号带宽的2倍即可。但是当根据这个原则采集信号时,信号往往是失真的。当然,更高的带宽和采样率下,这个定律是非常适用的,例如,5倍的采样率。图3显示了用50MHz示波器采集25.3MHz的方波。此时,方波信号严重失真。然后,如果只将采样率提到到100MS/s,一下子还真无法认出是方波。与100MS/s的采样率相比,500MS/s采样率采集出来的信号更像是方波信号(但是由于示波器带宽的限制,方波还是被磨平了一些)

图9 用100MS/s采样率采集25.3MHz的方波信号,严重失真。用500MS/s采集出来的信号看起来有点像方波信号的。


三、等时间采样(ETS)

一些示波器有一个等时间采样模式,一个快速采样模式。如PicoScope 6000系列采样率为5G/s, 其在ETS模式下,单通道采样率能够达到200GS/s,四个通道同时使用时,ETS采样率高达50GS/s。


值得一提的是ETS模式下高采样率是通过AD采样时钟精确的相位偏移实现的。该模式适用于稳定的周期信号。因为一段时间之后,波形将重建。简言之,就是一个周期采集一个数据点,下一个周期在采集一个采样点,两个采样点有固定的相位差。采集多个周期之后,会将这些点合成一个周期的波形。


四、ADC分辨率

还有一个常常需要考虑的核心参数:AD分辨率。即模拟波形如何映射到数字波形的。一个8位的ADC表示可以将模拟波形分为28=256等份。例如示波器的测量范围是±5 V ,峰峰值10V,表示示波器能够分辨的最小电压为10V/256=39.06mV.


这也告诉我们数字示波器一个事实:选择尽可能小的测量范围,以便于获得更准确的测量结果。测量范围±1V,8位分辨率分辨的最小电压7.813mV。但是往往待测信号掺杂其他信号,例如一个带负载的开关,刚打开的瞬间会有一个7V的尖峰,然后才回到正常的0.5V。如果你想要测量该尖峰,那么你就不能用最小的测量范围。


一个12位的分辨率的示波器,当测量范围为±5 V(峰峰值10V),将模拟信号分成212=4096等份,最小可分辨电压为2.551mV。如果分辨率为16位,10V峰峰值电压范围被分为216=65536份,最小分辨电压0.1526mV。一般情况下,我们需要在高分辨率慢速ADC和低分辨率快速ADC之前作出取舍。但是Pico Technology 的柔性分辨率5000系列示波器是一个例外,因为它允许你动态的在8位、10位、12位、14位、15位、16位分辨率进行切换。不过分辨率的选择同时使用的通道数量和最高采样率。


一般的示波器都是8位的ADC分辨率,当然也有一些高分辨的示波器。但是这些高分辨率是固定的,无法改变。所以在购买示波器时,我们必须选择要买高分辨率的示波器还是高采样率的示波器(分辨率高,采样率相对就低一些)。有些聪明的示波器厂家说他们的示波器可以使用8-14位的分辨率,也可以选择不同的采样率。他们可以单卖采集板卡,让用户可以将原有的示波器升级到更高的分辨率。TiePie就是这样做的。除了之前提到的柔性分辨率示波器,Pico Technology 也有最高14位的固定高分辨率示波器。一些其他大的示波器厂家也有高分辨率示波器。例如 力科HRO高分辨率示波器(12位分辨率)。


许多示波器表明可以有等效高分辨分辨率或软件分辨率增强功能。这是通过滤波实现的一种软件增强技术。该技术可能对测量信号的带宽有一定的影响。千万要注意,一个实际12位,100MHz带宽的示波器跟通过8位分辨率,100MHz示波器软件增强技术实现12位分辨率是不一样的。


用示波器的FFT模式(通常称为频谱分析仪模式),我们可以看到高分辨ADC和增强的分辨率的不同。如果只需要在屏幕上观看时域波形,那么我们可能不会注意14位分辨率的精确度或者其他。但是,如果需要测量谐波失真(THD),或者其需要精确测试频率的应用,高分辨是直观重要的。

图10 不同分辨率下的显示效果

Ⅲ:如何选择一个示波器?讨论示波器的软件特征

该系列我们将来讨论PicoScope示波器的软件特征,例如,远程控制、FFT、数字解码和缓存大小等。


前两个系列,我介绍了PC示波器和台式之间的区别,探头的物理特性和示波器的核心参数,如模拟带宽、采样率和ADC分辨率等特性。本系列将介绍示波器的其他特征:外部触发和时钟同步,并且我会总结一下所有我讲过的东西。


一、储存深度

数字示波器通过ADC转换器将模拟信号转换成数字信号,然后将其存储在存储器中,所以示波器的一个重要特征就是它能够储存多少样本,即缓存深度。这个参数在高速采样率下尤为重要---例如,在采样率5GS/s时, 一百万个样本(1MS)意味着能够存储200μs的数据。一般情况下,一台低价位的示波器只有很小的缓存空间。在网上你可以看到一款这样的示波器Hantek DSO5202P,采样率1GS/s 的采样率,但是只卖400美元,因为它的记录长度只有24KS而已,即只能记录24μs的数据。你也可以发现缓存更小的示波器,例如一款型号为Agilent TDS2000C的示波器就只有2.5K的缓存深度。如果你只关注触发信号,那你可以选用更小缓存的示波器。但是,当用触发也无法捕捉到一些特殊故障时,你可能就需要一个大的缓存来捕捉长时间连续信号,以便于从中查找故障。小的缓存意味着在你很难去获得你想要的信号。


即是一些示波器声称大缓存,但是实际上,我们想要获得全部的缓存也是有困难的。PS6403D示波器是PicoTech的其中一款1GS缓存的示波器,在配套的软件上可以设置示波器的所有参数,但是该软件实际上的将驱动缓存限制在500MS左右。然而我不得不承认这真的是非常让人印象深刻的,直到存储器存满之前,一直能够保持5GS/s的采样速度,就算它建议的存储器带宽是40Gb/s!。借助于分段存储器(这个将来会介绍)我们可以用到全部的缓存,但是它不能用来捕捉一个连续的1GS大小的数据长度。


二、FFT长度

示波器的广告总会在间接地提到它们有“频谱分析仪”的功能。事实上,示波器只是对采集到的信号进行了FFT变换。一个明显的区别是频谱分析仪有一个“中心频率”,你可以在中心频率的任意一侧测量实际带宽。通过扫描中心频率,你可以得到频域中一个非常大范围内功率图表。


示波器的FFT的模式,没有什么类似于中心频率的东西。它测量从0Hz到某个特定的频率(这个上限频率往往是可以调节的)。这个限制往往是示波器的采样频率的一半,但是也会受示波器的模拟带宽的限制。示波器的频谱分析中有一个参数“FFT长度”,表示多少采样点被用来计算FFT。这个参数也可以用图表中 “bins”的数量(例如水平频率分辨率)表示。有些的台式示波器也许会有一个固定的FFT长度,例如只有2048个FFT长度。这个可以看得到0-100MHz 的所有频率,但是如果你想要放大观测95-98MHz这个范围频谱该怎么办呢?因为示波器实际上是从0Hz开始计算FFT,所以这个范围只能显示大约60个采样点的频谱。这就是为什么我们需要非常长的FFT长度—它允许您放大信号并观测局部信号频谱细节。你可以降低示波器的采样率,放大观测0Hz附近的频谱。当然,如果你想要精确的测量1-10kHz范围的频谱时,设置合适的采样率,让2048个采样点分布在0~20kHz附近,当你放大波形的时候你也可以得到正确的细节。这种情况下,2048个FFT长度也是没有问题的。


另外,为了提高水平方向的细节,更长的FFT长度可以降低噪声。如果你想要把示波器来进行频谱分析,那么更长的FFT长度将助你一臂之力。就像在图1中显示的那样,是用控制板的磁性探头来进行FFT。在这里我放大了频谱的一部分,左边是2048个点的,右边有131072个点。

图11 不同FFT长度的频谱分析对比图

选择示波器时需要注意:低端小缓存示波器往往有很短的FFT长度。当然也有一些深度缓存示波器,它们却拥有很短的FFT长度,例如Rigol DS2000DS4000DS6000,从这些型号的规格书中看出,虽然他们有131MS的缓存深度,它们只用了2048个采样点。相比之下,PC示波器是比较好的,因为它们可以在更加高性能的PC上做FFT分析,而不是仅仅局限于DSP处理器或者是一个FPGA处理器。比如说,Pico 6403D允许FFT的长度达到1,048,576个采样点。


三、段存储器

我认为示波器必须具备的一个功能就是段存储器。这就意味着你可以设定一个触发事件,连续采集多个的波形。对于一些偶发性毛刺,段存储器可以帮助您更快的找到它。


图2中显示的是PicoScope软件上的段存储器查看器,可以设置高达10,000存储段,同样Rigol DS4000和DS6000中也有该功能,它们称之为“帧”,最高记录200,000帧。一旦捕捉了一定数量的数据段/帧,你可以手动查看各个缓存,从中查找错误,或者用一些其他的功能,例如遮罩测试高亮显示各个帧/存储段中的异常数据。

图12 段存储器显示窗口

有些示波器会把段存储器作为一个插件,例如,安捷伦示波器中除了3000X系列默认有段存储器的功能外,其他系列的示波器默认的没有这个功能,除非花钱额外购买段存储器插件。


四、远程控制和流模式

一个更先进的方法是用电脑来控制示波器。如果你想要把示波器用在电子产品的故障检测中,那你就需要详细了解一下示波器提供的各种功能。


PC示波器在这方面就有很大的优势,因为它本身就是用来和电脑交互的。似乎大多数主流的PC示波器供应商都提供各种语言下编程接口(API):我发现大部分PC示波器都提供了C, C#, C++, MATLAB, Python, LabVIEW和Delphi开发例程。一些不出名的PC示波器是没有API函数的,所以你要仔细核对待购买的设备是否具有该功能。


大部分的台式示波器也有发送命令的功能,一般都会遵循一些的标准,例如VISA标准。但是,我发现这些台式示波器似乎都有一个比PC示波器更慢的接口。也许是因为,对PC示波器来说,与PC接口的是一个至关重要的功能,而台式示波器只是作为一个附加的功能。当然,这说法也不是百分之百成立的,比如说一款Teledyne LeCroy的示波器,它似乎可以提供给你一些类似于PC示波器的功能(如多重窗口)。


除了控制示波器,另一个让人感兴趣的功能是流模式。流模式的数据是不经过示波器的缓存,而是直接地通过USB接口或以太网等PC接口传输到电脑上。与简单通过命令来控制示波器相比,这个功能更加复杂,因为想要通过USB获取更快的数据流绝非易事。但是,流模式却带来了更多有趣的特性,例如,你可以把你的示波器当作软件定义的无线电(SDR)的一部分。如果你真的想用流模式,请务必要仔细地阅读说明书上关于流模式的限制的说明。


五、串行解码

串行解码是另一个非常有用的功能。如果你有一台数字逻辑分析仪,那么它一般都会包括串行解码的功能。但是,在示波器中,这个功能也是非常有用的。如果你要查找一个偶发的奇偶校验错误,可以用示波器上的模拟显示来观察这个错误,看看是由于信号弱导致的还是因为噪声引起的。


虽然很多示波器都带有这样的功能,但是很多是要求你另外购买的。一般情况下, PC示波器包含该功能且不需要额外付费,而台式示波器会要求你另外付费。比如,在DS4000系列中,它要500美元,在安捷伦3000X系列中,要800美元,在泰克的3000系列中,需要1100美元。根据不同的供应商,它可能包括多个协议或者只是包括一个协议。但是如果你想要所有的协议,它的费用可能比示波器本身还要贵。一般情况下,购买一个PC逻辑分析仪会比购买一个示波器软件包还便宜。


我选择PC示波器的另一个主要原因就是额外的功能不需要额外的费用!不用串行解码时,你也可以观察信号,看看是否有噪声。有了内置解码功能,你可以很快地辨别出错误发生的位置。我录制了一些串行解码的例子,点击链接进入http://v.youku.com/v_show/id_XODQ0Mzc2MjM2.html

[1] [2]
关键字:示波器  采样率 引用地址:如何选择一个示波器,有哪些隐藏参数需要注意

上一篇:利用定制用户界面或测试自动化功能简化示波器的操作过程
下一篇:利用RTO数字示波器在时域和频域解决EMI问题

推荐阅读最新更新时间:2024-11-21 13:41

示波器的校准具体步骤
方法如下: 1、打开示波器,如图,找到MENU,点击进入,找到电压倍数,如图为x10档(档位可以自己选择,与探头一致即可)。 2、将示波器的探头档位调至X10档,如图。 3、找到校准 接口 ,如上图,将地线夹在地上,探笔处于5V接口上,如图。 4、按下autoset键,如图。 5、出现5V矩形波,如上图。 测量中应注意的事项 (a)测量时,不要把仪表放置在附近有强磁场的地方使用。 (b)被测信号的幅度不能超过示波器各输入端规定的耐压值,防止烧坏示波器的放大器。 (c)测试时,示波器的机壳应悬浮,避免造成短路。 (d)用示波器测出的交流电压值为峰-峰值。 (e)测试线要尽量短,探极要靠近被测点,否则有可能
[测试测量]
<font color='red'>示波器</font>的校准具体步骤
python控制示波器获取波形_三种方法教你用示波器快速捕获异常
万事开头难!当你想用示波器来分析问题时,你一定有想过,我要如何才能把问题抓下来?当然,只有抓下来之后,才能进行后面种种的分析,否则一切都是空谈。本文将带你用三种最好用的方法将异常抓下来。 一、滚动模式 滚动模式也许你很少用,但它却是分析问题最简单、最粗暴的方法。你仅仅要做的,就是确定异常多长时间会出现,采样率是否足够。如5秒内会出现的异常,设置滚动采集7s的数据后停止,在采样率足够的前提下,我相信问题已经逃不出你的手掌心了。 图1 滚动采集电压跌落波形 小结 滚动模式是“无死区”的,任何异常问题都可以抓下来,但前提是,采样率要足够高。如上图,采样率为50MHz,当异常的频率超过25MHz,就很难采集到准确的波
[测试测量]
python控制<font color='red'>示波器</font>获取波形_三种方法教你用<font color='red'>示波器</font>快速捕获异常
浅谈模拟示波器触发模式和功能
示波器是任何设计、制造或是维修电子设备的必备之物。当今世界瞬时万变,工程师们需要最好的工具,快速而精确地解决测量疑难。在工程师看来,面对当今各种测量挑战,示波器自然是满足要求的关键工具。而示波器的用途也不仅仅局限于电子领域 示波器的触发能使信号在正确的位置点同步水平扫描,使信号特性清晰。触发控制按钮可以稳定重复的波形并捕获单次波形。大多数用示波器的用户只采用边沿触发方式 三大主要触发模式 1、自动触发 当无触发信号输入,或者触发信号频率低于50Hz时,扫描为自激方式。不论是否满足触发条件都有波形显示,且触发的位置随机,此时,便呈现出波形“抖动”的情况,该模式适用于低重复率和未知信号电平; 2、普通触发 当无触发信号输入时,扫描
[测试测量]
浅谈模拟<font color='red'>示波器</font>触发模式和功能
关于示波器中测量参数的算法
“在测试信号边沿的上升/下降时间的时候,跟我选择的存储深度有没有关系。比如我使用40GS/S的采样率测试PCIE CLK,如果在屏幕上显示一个时钟周期测试它的上升下降时间和我调节时基到8M的存储深度时测试到的上升下降时间有没有区别?” 回答: 这是一个非常好的问题。其实我在培训时也常问客户另外一个问题:您知道示波器中上升时间是怎么确定的吗?我在各种讲座会和培训中问这个问题时至今居然没有得到过一次准确的答案!这涉及到示波器中对上升时间的算法定义。很多人知道“上升沿”的10%-90%,但“上升沿”是指什么呢?这时候工程师们会用手从波形的下面指到上面。那么从下面到上面是指下面的最小值点到上面的最大值点呢还是下面的平均值位置到上面的平
[测试测量]
关于<font color='red'>示波器</font>中测量<font color='red'>参数</font>的算法
6种可测试高速通信信号的数字示波器
  随着电子设备越来越多地采用射频和数字器件,测试设备正开始将一系列更高级的测量工具整合起来,用于高速通信信号测试。被普遍认为是实验台中心的数字示波器,也没有回避这一波集成的浪潮。最新的机型设计了内置波形发生器、逻辑分析仪,以及串行协议和频谱分析功能。   现代示波器不再只是一个时域测量工具。它已演变成为能够进行频域测量,从而能够满足长期演进(LTE)和无线局域网(WLAN)等无线通信系统的信号验证和调试的需要。它使用快速傅里叶变换(FFT)功能或频谱分析软件,通过仪器内置的多种增强测试功能来执行这些测量。      图1:由于测试设备供应商集成了逻辑、协议和频谱分析等功能,现代示波器已不再只是一个时域测量工具。(图片由Thin
[测试测量]
选择示波器的十大因素
您需要多少带宽? 您需要多少条通道? 您要求的采样率是多少? 您需要多少存储器深度? 您需要哪些显示功能? 您需要哪些触发功能? 探测信号的最佳方式是什么? 您需要哪些存档和连通性功能? 您需要哪些附加应用软件? 后一个、但也是同样重要的一个问题: 演示、演示、还是演示! 作为电子工程师的您是否每天都要使用示波器? 如果答案是肯定的,选择适当的示波器来满足您的需求是一项重要任务。比较不同制造商生产的示波器的技术指标和特性可能是一件耗时耗力的工作。本文介绍的概念旨在加快示波器选择过程,帮助您避免某些常见的问题。不管您正在考察的示波器来自哪家制造商 , 认真分析每个示波器与本文讨论的 1 0 个问题的关系,都将有
[测试测量]
选择<font color='red'>示波器</font>的十大因素
一文详解示波器的触发功能(下)
在上期文章《RIGOL技术站 | 示波器的触发功能》一文中,小编介绍了示波器触发的原理、概念、重要性等知识,对示波器的触发功能有了初步的了解和认识。本篇文章小编将继续为大家介绍模拟触发、数字触发及数字触发的几种不同类型,充分了解示波器的触发功能,以便在测量的过程中更好地帮助工程师! 01触发的实现How to achieve Trigger? 数字示波器主要由以下几个部分组成: AFE模拟前端电路:主要包括衰减器和放大器,用于信号调理; ADC模数转换器:将探测的模拟信号转换为数字域处理信号; Trigger触发单元:将捕获用户设置的触发事件; Timebase时基:控制采样时间,触发位置处理; 波形数据处理:完成数字波形的采
[测试测量]
一文详解<font color='red'>示波器</font>的触发功能(下)
聊聊示波器的几种触发方式
我们先简单回顾下什么是示波器的触发。 由于信号无时无刻都在变化,如果一股脑的都把他们显示在示波器上,就会很乱,根本无法让我们看清楚,从而也就无法观察信号来解决问题。考虑到信号大多数时候都是以某种规律周期性出现的,因此我们只要找到他重复的规律,把每一次重复叠加显示在示波器上,信号就可以稳定观察了。 这种把信号稳定显示就是触发,也叫同步扫描。而寻找信号重复的规律,就是选择触发方式的过程。下面我们来看下示波器常见的都有哪些触发方式,以及是如何来帮助我们找到信号重复的规律的。 示波器最常见也是最常用的触发方式就是边沿触发了。因为大多数信号都是以上升和下降周期性变化的。边沿触发是指当信号的边沿到达某一设定的触发电平并继续上升或下
[测试测量]
聊聊<font color='red'>示波器</font>的几种触发方式
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved