如何通过回波损耗测量来确定谐振器的Q因子

发布者:落寞梦惊最新更新时间:2023-05-31 来源: elecfans关键字:回波损耗  谐振器  Q因子 手机看文章 扫描二维码
随时随地手机看文章

想要测量谐振器的Q因子并不少见。可能需要确定其在耦合谐振滤波器中的适用性,或者评估RFID标签的性能。通常,此测量是通过非常轻的输入和输出耦合进行的,以减小50-Ω源阻抗和负载阻抗负载效应


  1. 对于谐振器的2端口Q测量,请建立非常轻的输入和输出耦合,以减小50Ω源阻抗和负载阻抗的负载效应。


到谐振器的耦合和从谐振器的耦合可以用两个电短路的天线或回路耦合到谐振器的电场或磁场来实现(图1)。可以进行这种测量的一种仪器是Copper Mountain Technologies的 TR1300 / 1,这是一种1.3 GHz矢量网络分析仪(VNA)(图2)。


2. TR1300 ,1 VNA可用于进行谐振器Q测量。

在以这种方式测量S21 S参数之后,分析数据以提取谐振器的谐振频率和Q因子。将响应的峰值作为共振频率,然后将两个标记放置在比峰值低3 dB的位置。峰值频率除以峰值的3 dB宽度就等于Q因子。


例如,对图3所示电路的扫描会导致图4所示的测量。该图为我们提供了实验的Q因子13.62 /(13.99 − 13.28)= 19.2。

o4YBAGAGp9-AKHbCAADBNYd1XJE889.png

3.所示为用于VNA测量的2端口示例电路。

o4YBAGAGp_KADRm0AAHkvP8OtAM252.png

4.该图说明了图3所示电路的3 dB Q因子测量。

忽略了12pF耦合电容器和50μl源极和负载的影响,原理图中的近似Q系数等于113.pF电容器在13.62 MHz处的导纳除以电阻器电导,或者9.673e-03 / 5e-04 = 19.3。这表明与实验确定的值存在合理的一致性。


通过减少耦合,可以获得更好的测量结果,使S 21峰值下降至-40 dB左右,从而降低负载效应。但是,S 11读数将变得很小。我们将显示Q因子可能来自S 11测量,但是数量必须足够大才能使用。


那怎么办呢?显然,在S 11 曲线上寻找比最小值高3 dB的点不是问题。上面显示的迹线的最小值为-1.6 dB,因此这显然是不可能的。事实证明,在无损电路中。S 11和S 21之间存在关系:

从前面的图中,我们可以计算出S 21的值:

o4YBAGAGp_6ANyS_AAAo8gSwE7c256.png

如果:

pIYBAGAGqAqARsqMAABdDCWqRn4861.png

然后:

pIYBAGAGqBSAOeIvAABhp8BG1gg899.png

S 21本身并不是真正的值,但是我们仍然可以使用它。计算S 21的值(向下降低3 dB)意味着乘以1 /√2:

o4YBAGAGqCGARzQCAABSJ1lGvNQ489.png

现在我们回到S 11:

pIYBAGAGqDWABNQjAABZTgJTPQo594.png

或-0.748 dB。

如果我们从较早的测量结果的最小值的每一边都找到了S 11的值,则结果如图5所示。

从所示的三个频率,我们可以计算Q因子:

o4YBAGAGqESAdbCXAAA9_8T7YxA258.png

该结果非常接近于19.2的计算值。

因此,通过相对简单的计算,就可以仅通过回波损耗测量来确定谐振器的Q因子。


关键字:回波损耗  谐振器  Q因子 引用地址:如何通过回波损耗测量来确定谐振器的Q因子

上一篇:电子测量仪表中造成误差分析的原因是什么,如何避免
下一篇:超声波电源设计时的电路和波形测试案例

推荐阅读最新更新时间:2024-11-18 07:37

形成单输出滤波器的PC配置RLC谐振器
本期"设计实例"栏目介绍的一种低功耗仪器用的通用滤波器电路,你可以使用并行端口通过PC 对它进行编程。这种滤波器电路不用数字式电位器而使用模拟开关和锁存器来进行数字控制(图1和图2)。只要在PC上运行简单的软件代码,你就可以配置出一种可靠的设计,用作低通滤波器、高通滤波器或带通滤波器,并且还可以选择所需的中心频率ω0(表1)。与类似的可控制设计(参考文献1)不同的是,这一设计是一种每次只有一个输出的滤波器。很多对功耗敏感的系统并不需要同时滤波功能。   这一设计的论据是串联RLC谐振器可通过其元件提供不同滤波功能。由于这一设计基于RLC部件,所以把它转换成PC控制的谐振器并不重要。 在图1中,电感LP是作为一个PC控制的
[应用]
TIBAW谐振器技术将大幅改进通信网络性能
设计师可充分利用配备了TI BAW技术的创新性芯片,来减少BOM的器件数量、大幅改进通信网络性能、并且显著提高了产品的抗震动和抗冲击能力 德州仪器(TI)宣布推出基于体声波(BAW)的全新嵌入式处理器和模拟芯片,该产品非常适合应用在下一代无线物联网和通信基础设施的设计中。本次推出的采用TI BAW技术开发出的两款设备分别是CC2652RB SimpleLink™无线微控制器(MCU)与LMK05318网络同步器时钟。它们将帮助系统设计师简化设计逻辑,缩短产品上市时间,同时实现稳定、简化和高性能的数据传输,从而可以降低潜在的整体开发和系统成本。 具有离散时钟和石英晶体器件的通信和工业自动化系统可能不仅成本高昂,而且开发过程复
[网络通信]
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved