基于Lab-PC-1200型数据采集卡实现虚拟相位差计的设计

发布者:泉趣人最新更新时间:2023-06-05 来源: elecfans关键字:数据采集卡  虚拟相位差计 手机看文章 扫描二维码
随时随地手机看文章

随着计算机技术、微电子技术和电子测试技术的迅猛发展,一种全新的测试仪器拟仪器(Virtual Instrument,VI) 种新型的、富有生命力的仪器种类。首先提出了虚拟仪器的概念。这一概硬件支撑,充分应用计算机独具的运算、存储、回访、调用、显示以及文件管理等智能式功能,把传统仪器的专业功能软件化,使之与计算机融于一体,这样便构成了一台从外观到功能都能与传统仪器相同,同时又充分享用了计算机智能资源的全新仪器 虚拟仪器的主要功能由数据采集、数据测试和分析、结果输出显示三大部分组成。其中数据分析和结果输出完全可由基于计算机的软件系统来完成,因此只要另外提供一定的数据采集硬件,就可构成由计算机组成的测量仪器。


一、图形化软件开发平台LabVIEW

LabVIEW(Laboratory Virtual Instrument Engineering workbench)是一个图形化程序 开发环境,主要用于数据采集、数据分析、测试和仪器控制等领域。它与传统编程语言有着 诸多相似之处,如相似的数据类型、数据流控制结构、程序调试工具,以及层次化、模块化 的编程特点等。但二者最大的区别在于:传统编程语言用文本语言编程;而LabVIEW使用图 形语言(即各种图标、图形符号、连线等),以框图的形式编写程序。

一个LabVIEW程序包括三个主要部分:前面板、框图程序、图标路线端口。前面板是 LabVIEW程序的交互式图形化用户界面,用于设置用户输入和显示程序输出,目的是仿真真 实仪器的前面板。框图程序则是利用图形语言对前面板上的控制量和指示量进行控制。图标 路线端口用于把LabVIEW程序定义成一个子程序,以便在其它程序中加以调用,这使LabVIEW 得以实现层次化、模块化编程。


二、虚拟相位差计的设计

1、系统组成与功能

本虚拟仪器采用美国 NI 公司的Lab-PC-1200 型数据采集卡,将其直接插入到计算机相 应标准的总线扩展插槽内构成PC-DAQ(Data Acquisition)插卡式虚拟仪器。主要测量两个 同频正弦信号的幅值、频率、相位差等。系统组成框图如图1 所示:

2、面板设计

软面板程序为用户提供一个友好的图形化界面,面板中的所有对象基本上可分为控制量 和显示量,控制量用来模拟传统仪器上的开关和旋钮;显示量用于显示测量和处理的结果。

LabVIEW 提供了非常丰富的界面控件对象,可以快捷地设计出生动、直观、操作方便的用户 界面。本文设计的虚拟相位差计软面板如图2 所示。

该软面板左边为实时波形显示,可显示从0 通道和1 通道实时采样的两个波形;右边为 李沙育图形,下面是波形调整、波形选择和频率、幅值、相位、相位差的测量结果。另外, 在运行该虚拟仪器时会弹出一个存储窗口,可把程序运行结束之前所有的历史测量记录保存 在所指定的文件中,以备观察分析和做进一步的处理。


3、程序框图结构设计

虚拟相位差计的框图程序如图 3 所示,它采用的是图形化编程语言,非常直观。该框图 包含了波形采集、波形显示和调整、波形测量、数据存储四部分。

(1)波形采集:本虚拟仪器采用的是美国NI 公司的 Lab-PC-1200 型数据采集卡,最高 采样频率为100KHz,输入信号范围为-5V~+5V,设置了1,0 两个采样通道。该部分由AIConfig、AI Start、AI Read、AI Single Scan 和AI Clear 组成。其中用了Max&Min 与一个移 位寄存器控制对采样数据的读取速度。

(2)波形显示和调整:首先将数据采集子程序采集到的两个模拟输入信号(二维数组) 按采集通道的不同用Index Array 函数分成两个一维数组,再将它们分别用Bundle 函数组成 起点x0 = 0,时间间隔Δx = 0.001的簇,最后用Build Array函数将两个簇组成簇数组送入 波形图可观察到两列实时波形。若直接将两个一维数组用Bundle 函数组成簇送入波形图可 观察两列正弦波的李沙育图形。框图中的三个Case 结构的作用是控制软面板上幅基调节、 时基调节、波形选择,通过鼠标调节这些旋钮和垂直指针滑动条可调整实时波形在屏幕上的 显示效果。

(3)波形测量:主要测量两列正弦波的频率、振幅和相差,其中着重研究了相差的测量 方法。本文采用的是谱分析法测相位,其原理是通过Amplitude and Phase Spectrum 子程序 求取两个正弦信号的频域特性,取两信号相频特性曲线中对应于信号各频率分量的相位值, 再根据采样信号的周期数用Index Array 函数确定两个信号主频分量的相位,将其相减即得 相位差。框图程序如图4 所示。

(4)数据存储:数据存储部分由Open/Creat/Replace File、Write File 、Close File 和Simple Error Handler 组成,另外采用了Format into String 功能定义了数据存储的格式,并用Get Data/Time String 功能返回每次测量的时间。框图程序如图5 所示。


4、测量结果讨论

利用“移相桥”电路进行测试,在某一状态下得到测量结果如下,与各参数的理论值相 比较略有误差。其原因在于一方面数据在采集、传送和转换过程中不可避免的会产生各种噪 声和干扰,外界的干扰也会侵入到系统中来,因此在数据的处理过程中,数字化测量将会造 成一定的误差;另一方面信号的频率应该是确定的,但实际中会存在频率偏差,这也是引起 相差测量不准的原因。另外,器件所标参数值与实际值之间也存在误差,但不断改良测量算 法和采用性能更加优良的数据采集卡会取得更好的测量效果。

三.结束

目前,美国的NI 公司和HP 公司在虚拟仪器的研究方面处于领先地位,能购买其虚拟仪器产品必将有助于我们的科研和教学工作,但价格十分昂贵。因此,根据自己的需要自行研究和开发虚拟仪器也是可行的。本文介绍的虚拟相位差计结合了示波器和相位差计的基本 功能,使用灵活方便,有效改善了本院电工实验教学条件。相信随着计算机技术和测控技术 的不断发展,虚拟仪器将成为未来教学科研的重要方法和手段,将逐渐取代传统仪器成为测试仪器的主流。

关键字:数据采集卡  虚拟相位差计 引用地址:基于Lab-PC-1200型数据采集卡实现虚拟相位差计的设计

上一篇:采用NI LabVIEW软件和PXI实现气体燃料测量系统的设计
下一篇:基于PXI平台与LabVIEW开发环境实现BMS测试平台的设计

推荐阅读最新更新时间:2024-11-02 16:57

基于ARM处理器LPC2142的高速数据采集卡设计
0 引言 在瞬态信号测量和图像处理等一些高速、高精度的测量中,往往都需要进行高速数据采集。现在通用的高速数据采集卡(一般多是PCI卡或ISA卡)存在有安装麻烦、价格昂贵、受计算机插槽数量/地址/中断资源的限制、可扩展性差,而且在一些电磁干扰性强的测试现场无法专门对其进行电磁屏蔽,因而会导致采集的数据失真等缺点。为此,本文给出了采用PHILIPS公司的一款LPC2142芯片(基于ARM7内核,内置了宽范围的USB2.0 Device全速串行通信接口)设计的数据采集卡的设计方案,从而有效解决了传统高速数据采集卡的上述缺陷。 1 基于ARM的数据采集卡系统结构 该系统主要由双通道模/数转换器AD9238、ARM微控制器LPC214
[应用]
B超声射频信号高速数据采集系统设计
   前言   医学超声成像是利用超声波通过人体各组织时所反映的声学特征的差异来区分不同组织,并以图像的形式显示出脏器的界面和组织内部的细微结构。这种检查方式结合了超声物理学、现代电子技术和生物医学等多种技术,是继X线成像技术后,在医学中发展最迅速,应用最广泛的成像方法。特别是数字扫描转换器(DSC)和数字信号处理(DSP)的出现,把B型超声成像技术推向以计算机数字图像处理为主导的,功能强,自动化程度高,图像质量好的新水平。   在数字超声成像系统中,数字图像处理的方法直接影响着成像的质量。近几年来,为了提高超声图像的分辨率,改善图像的质量,以便于更好地提取有益于医疗诊断的信息,发展了多种图像处理的方法。根据处理模式的不同,主
[网络通信]
基于PCI 9052总线的高速噪声检测系统
      摘要 :文章介绍了一种基于PCI总线的高速噪声检测系统,介绍了采用PCI 9052作为PCI总线接口芯片的数据采集部分的设计原理,并说明了数据采集卡的高速采样和速率可变的实现原理,给出了底层硬件同上层软件的连接实现。    关键字 :噪声检测;PCI总线;PCI 9052;WDM    前言   噪声检测系统用于对环境噪声进行样本采集和频谱分析,确定噪声中的频率分量是否对人体造成伤害。该系统分为高速数据采集卡和频谱分析两部分。数据采集卡将采样采集到的数据送入计算机内,由应用程序完成快速频谱分析功能。由于环境噪声是实时变化的,因此需要采集电路的高速采样和数据的高速传输。鉴于传统总线无法满足高速传输的要求,采用了P
[嵌入式]
基于PCI 9052总线的高速噪声检测系统
基于虚拟仪器LabVIEW的虚拟相位差的设计
  随着计算机技术、微电子技术和电子测试技术的迅猛发展,一种全新的测试仪器拟仪器(Virtual Instrument,VI)种新型的、富有生命力的仪器种类。首先提出了虚拟仪器的概念。这一概硬件支撑,充分应用计算机独具的运算、存储、回访、调用、显示以及文件管理等智能式功能,把传统仪器的专业功能软件化,使之与计算机融于一体,这样便构成了一台从外观到功能都能与传统仪器相同,同时又充分享用了计算机智能资源的全新仪器 虚拟仪器的主要功能由数据采集、数据测试和分析、结果输出显示三大部分组成。其中数据分析和结果输出完全可由基于计算机的软件系统来完成,因此只要另外提供一定的数据采集硬件,就可构成由计算机组成的测量仪器。   一、图形化软件开发平台
[测试测量]
基于<font color='red'>虚拟</font>仪器LabVIEW的<font color='red'>虚拟</font><font color='red'>相位差</font><font color='red'>计</font>的设计
基于DSP和FPGA的高精度数据采集卡设计
引言   当前,许多领域越来越多地要求具有高精度A/D转换和实时处理功能。同时,市场对支持更复杂的显示和通信接口的要求也在提高,如环境监测、电表、医疗设备、便携式数据采集以及工业传感器和工业控制等。传统设计方法是应用MCU或DSP通过软件控制数据采集的A/D转换,这样必将频繁中断系统的运行,从而减弱系统的数据运算能力,数据采集的速度也将受到限制。本文采用DSP+FPGA的方案,由硬件控制A/D转换和数据存储,最大限度地提高系统的信号采集和处理能力。 系统结构   整个采集卡包括信号调理、数据采集、数据处理和总线接口设计。系统结构如图1所示。 图1 系统结构框图   本文设计了具有信号衰减、增益放大和滤波等功能的信号
[模拟电子]
基于LPC2142微控制器和EP1C3T100器件实现高速数据采集卡的设计
1、 引言 随着现代工业生产和科学研究对数据采集要求的日益提高,在瞬态信号测量、图像处理等一些高速、高精度的测量中,需要高速采集数据。现在通用的高速数据采集卡一般多是PCI卡或ISA卡,存在以下缺点:安装复杂,价格昂贵,受计算机插槽数量、地址、中断资源限制,可扩展性差,在一些电磁干扰性强的测试现场,无法专门对其做电磁屏蔽,导致采集的数据失真。 本数据采集卡采用Philips公司的LPC2142微控制器(基于ARM7内核,内置了宽范围的USB 2.0串行通信接口),有效地解决了传统高速数据采集卡的缺陷。 2、 基于ARM的数据采集卡原理 本系统主要由双通道模/数转换器AD9238、ARM微控制器及FPGA器件EP1C3T10
[单片机]
基于LPC2142微控制器和EP1C3T100器件实现高速<font color='red'>数据采集卡</font>的设计
基于ADμC812的CAN总线智能节点的设计
1 引言 CAN(Controller Area Network)总线协议最初是以研发和生产汽车电子产品著称的德国BOSCH公司开发的,它是一种支持分布式实时控制系统的串行通信局域网。目前,CAN总线以其高性能、高可靠性、实时性等优点,而被广泛应用于控制系统中的检测和执行机构之间的数据通信中。CAN总线具有以下一些技术特性: ●多主方式工作,采用非破坏性的基于优先权的总线仲裁技术; ●借助接收滤波可实现多地址的帧传送; ●数据采用短帧结构,抗干扰性强,数据帧的信息CRC校验及其它错误检测措施完善; ●发送期间丢失仲裁或由于出错而遭破获的帧可以自动重发; ●严重错误时可自动关闭总线功能,以使总线其它操作不受影
[嵌入式]
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved