示波器探头的选择和使用原理分析

发布者:tony520最新更新时间:2023-06-26 来源: elecfans关键字:示波器  探头  应用范围 手机看文章 扫描二维码
随时随地手机看文章

示波器因为有探头的存在而扩展了示波器的应用范围,使得示波器可以在线测试和分析被测电子电路,如下图:

fb4343ba-cfea-11ed-bfe3-dac502259ad0.jpg

图1示波器探头的作用

探头的选择和使用需要考虑如下两个方面:

其一:因为探头有负载效应,探头会直接影响被测信号和被测电路;

其二:探头是整个示波器测量系统的一部分,会直接影响仪器的信号保真度和测试结果

一、探头的负载效应

当探头探测到被测电路后,探头成为了被测电路的一部分。探头的负载效应包括下面3部分:

1. 阻性负载效应;

2. 容性负载效应;

3. 感性负载效应。

fb56b472-cfea-11ed-bfe3-dac502259ad0.jpg

图2探头的负载效应

阻性负载相当于在被测电路上并联了一个电阻,对被测信号有分压的作用,影响被测信号的幅度和直流偏置。有时,加上探头时,有故障的电路可能变得正常了。一般推荐探头的电阻R>10倍被测源电阻,以维持小于10%的幅度误差。

fb6a6832-cfea-11ed-bfe3-dac502259ad0.jpg

图3探头的阻性负载

容性负载相当于在被测电路上并联了一个电容,对被测信号有滤波的作用,影响被测信号的上升下降时间,影响传输延迟,影响传输互连通道的带宽。有时,加上探头时,有故障的电路变得正常了,这个电容效应起到了关键的作用。一般推荐使用电容负载尽量小的探头,以减小对被测信号边沿的影响。

fb77ff74-cfea-11ed-bfe3-dac502259ad0.jpg

图4探头的容性负载

感性负载来源于探头地线的电感效应,这地线电感会与容性负载和阻性负载形成谐振,从而使显示的信号上出现振铃。如果显示的信号上出现明显的振铃,需要检查确认是被测信号的真实特征还是由于接地线引起的振铃,检查确认的方法是使用尽量短的接地线。一般推荐使用尽量短的地线,一般地线电感=1nH/mm。

fb842f56-cfea-11ed-bfe3-dac502259ad0.jpg

图5探头的感性负载

二、探头的类型

示波器探头大的方面可以分为:无源探头和有源探头两大类。无源有源顾名思义就是需不需要给探头供电。

无源探头细分如下:

1. 低阻电阻分压探头;

2. 带补偿的高阻无源探头(最常用的无源探头);

3. 高压探头

有源探头细分如下:

1. 单端有源探头;

2. 差分探头;

3. 电流探头

最常用的高阻无源探头和有源探头简单对比如下:

表1有源探头和无源探头对比

fb978d3a-cfea-11ed-bfe3-dac502259ad0.jpg


 

低阻电阻分压探头具备较低的电容负载(<1pf),较高的带宽(>1.5GHz),较低的价格,但是电阻负载非常大,一般只有500ohm或1Kohm,所以只适合测试低源阻抗的电路,或只关注时间参数测试的电路。

fbaa646e-cfea-11ed-bfe3-dac502259ad0.jpg

图6低输入电阻探头结构

带补偿的高阻无源探头是最常用的无源探头,一般示波器标配的探头都是此类探头。带补偿的高阻无源探头具备较高的输入电阻(一般1Mohm以上),可调的补偿电容,以匹配示波器的输入,具备较高的动态范围,可以测试较大幅度的信号(几十幅以上),价格也较低。但是不知之处是输入电容过大(一般10pf以上),带宽较低(一般500MHz以内)。

fbb52390-cfea-11ed-bfe3-dac502259ad0.jpg

图7常用的无源探头结构

带补偿的高阻无源探头有一个补偿电容,当接上示波器时,一般需要调整电容值(需要使用探头自带的小螺丝刀来调整,调整时把探头连接到示波器补偿输出测试位置),以与示波器输入电容匹配,以消除低频或高频增益。下图的左边是存在高频或低频增益,调整后的补偿信号显示波形如下图的右边所示。

fbc34222-cfea-11ed-bfe3-dac502259ad0.jpg

图8无源探头的补偿

高压探头是带补偿的无源探头的基础上,增大输入电阻,使得衰减加大(如:100:1或1000:1等)。因为需要使用耐高压的元器件,所以高压探头一般物理尺寸较大。

fbda83a6-cfea-11ed-bfe3-dac502259ad0.jpg

图9高压探头的结构

三、有源探头
我们先来观察一下用600MHz无源探头和1.5GHz有源探头测试1ns上升时间阶跃信号的影响。使用脉冲发生器产生一个1ns的阶跃信号,通过测试夹具后,使用SMA电缆直接连接到一个1.5GHz带宽的示波器上,这样示波器上会显示一个波形(如下图中的兰色信号),把这个波形存为参考波形。然后使用探头点测测试夹具去探测被测信号,通过SMA直连的波形因为受探头负载的影响而变成黄色的波形,探头通道显示的是绿色的波形。然后分别测试上升时间,可以看出无源探头和有源探头对高速信号的影响。

fbf05708-cfea-11ed-bfe3-dac502259ad0.jpg

图10无源探头和有源探头对被测信号和测量结果的影响

具体测试结果如下:

使用1165A 600MHz无源探头,使用鳄鱼嘴接地线:受探头负载的影响,上升时间变为:1.9ns;探头通道显示的波形存在振铃,上升时间为:1.85ns;

使用1156A 1.5GHz有源探头,使用5cm接地线:受探头负载的影响较小,上升时间仍为:1ns;探头通道显示的波形与原始信号一致,上升时间仍为:1ns。

单端有源探头结构图如下,使用放大器实现阻抗变换的目的。单端有源探头的输入阻抗较高(一般达100Kohm以上),而输入电容较小(一般小于1pf),通过探头放大器后连接到示波器,示波器必须使用50ohm输入阻抗。有源探头带宽宽(现在可达30GHz),而负载小,但是价格相对较高(一般每根探头达到同样带宽示波器价格的10%左右),动态范围较小(这个需要注意,因为超过探头动态范围的信号,不能正确测试。一般动态范围5V左右),比较脆弱,使用需小心。

fbfe9af2-cfea-11ed-bfe3-dac502259ad0.jpg

图11有源探头结构

差分探头结构图如下,使用差分放大器实现阻抗变换的目的。差分探头的输入阻抗较高(一般达50Kohm以上),而输入电容较小(一般小于1pf),通过差分探头放大器后连接到示波器,示波器必须使用50ohm 输入阻抗。差分探头带宽非常宽(现在可达30GHz),负载非常小,具有较高共模抑制比,但是价格相对较高(一般每根探头达到同样带宽示波器价格的10%左右),动态范围也较小(这个需要注意,因为超过探头动态范围的信号,不能正确测试。一般动态范围3V左右),比较脆弱,使用需小心。

差分探头适合测试高速差分信号(测试时不用接地),适合放大器测试,电源测试,适合虚地测试等应用。

fc1758a8-cfea-11ed-bfe3-dac502259ad0.jpg

图12差分探头结构

电流探头也是有源探头,利用霍尔传感器和感应线圈实现直流和交流电流的测量。电流探头把电流信号转换成电压信号,示波器采集电压信号,再显示成电流信号。电流探头可以测试几十毫安到几百安培的电流,使用时需要引出电流线(电流探头是把导线夹在中间进行测试的,不会影响被测电路)。

电流探头在测试直流和低频交流时的工作原理:

当电流钳闭合,把一通有电流的导体围在中心时,响应地会出现一个磁场。这些磁场使霍尔传感器内的电子发生偏转,在霍尔传感器的输出产生一个电动势。电流探头根据这个电动势产生一个反向(补偿)电流送至电流探头的线圈,使电流钳中的磁场为零,以防止饱和。电流探头根据反向电流测得实际的电流值。用这个方法,能够非常线性的测量大电流,包括交直流混合的电流。

fc2415b6-cfea-11ed-bfe3-dac502259ad0.jpg

图13电流探头测试直流和低频时的工作原理

电流探头在测试高频时的工作原理:

随着被测电流频率的增加,霍尔效应逐渐减弱,当测量一个不含直流成分的高频交流电流时,大部分是通过磁场的强弱直接感应到电流探头的线圈。此时,探头就像一个电流变压器,电流探头直接测量的是感应电流,而不是补偿电流,功放的输出为线圈提供一个低阻抗的接地回路。

fc3311e2-cfea-11ed-bfe3-dac502259ad0.jpg

图14电流探头测试高频时的工作原理

电流探头在交叉区域时的工作原理:
当电流探头工作在20KHz的高低频交叉区域时,部分测量是通过霍尔传感器实现的,另一部分是通过线圈实现的。

fc43fdfe-cfea-11ed-bfe3-dac502259ad0.jpg

图15电流探头交叉区域的工作原理

四、有源探头附件

现代的高带宽有源探头都采用分离式的设计方法,即:探头放大器与探头附件部分分开。这样设计的好处是:

1、支持更多的探头附件,使得探测更加的灵活;

2、保护投资,最贵的是探头放大器(一个探头放大器可以支持多种探测方式,以前需要几个探头来实现);同时探头附件保护探头放大器(探头附件即使损坏,价格也相对便宜);

3、这种设计方式容易实现高带宽。

poYBAGQnpuWAdRjWAAMDYMFn2Zs906.png

图16探头附件

这些探头附件,主要包括以下几种:
1、点测探头附件(包括:单端点测和差分点测);
2、焊接探头附件(包括:单端焊接和差分焊接,分离式的ZIF焊接);
3、插孔探头附件;
4、差分SMA探头附件(示波器一般直接支持SMA连接,但是如果被测信号需要上拉如HDMI,则必须使用SMA探头附件)。

探头附件的电路结构如下图所示:
1、在探头附件尖端部分会有一对阻尼电阻(一般82ohm),这对阻尼电阻的作用是消除探头附件尖端部分的电感的谐振影响;
2、探头尖端部分的后面是25Kohm的电阻,这个电阻决定了探头的输入阻抗(直流输入阻抗即电阻:单端25Kohm,差分50Kohm),这个电阻使得被测信号传输到探头放大器部分的功率是非常小的,不至于对被测信号有较大影响。
3、25Kohm的电阻后面是同轴传输线部分,这个传输线负责把小信号传输到放大器。这个传输线的长度可以很长,也可以很短,中间可以加衰减器,也可以加耦合电容。
4、同轴传输线连接到放大器,放大器是50ohm匹配的(差分100ohm匹配)。

fc69890c-cfea-11ed-bfe3-dac502259ad0.jpg

图17有源探头附件的结构

有源探头为了保持探头的精确度,需要工作在恒温状态,所以探头放大器不能放置到高低温箱里进行高低温环境下被测电路板的测试。从探头附件结构中可见中间的50ohm传输线的长短不影响探测,所以可以用很长的同轴电缆或扩展同轴电缆,让这个同轴电缆伸进高低温箱里进行高低温换进下被测电路板的测试。如下图是N5450A扩展电缆,使用N5381A焊接探头附件,可以工作在-55°到150°温度范围。

使用N5450A扩展电缆和N5381A探头附件,使用1169A 12GHz探头放大器,在-55°和150°环境下的频响曲线如下图所示,可见能够满足高速信号测试的要求。

fc95d4a8-cfea-11ed-bfe3-dac502259ad0.jpg

图19高低温探头在高低温下的频响

五、探头及附件准确度验证
下图是一个例子:被测信号是一个频率456MHz,边沿时间约65ps的时钟信号,分别使用不同类型的探头和探头附件的测试结果。
A图是使用12GHz的1169A差分探头和N5381A 12GHz焊接探头附件的测试结果,几乎完全复现被测信号;
B图是使用500MHz的无源探头的测试结果,显示的信号完全失真;
C图是使用12GHz的1169A差分探头和较长的测试引线的测试结果,显示的信号出现很大的过冲;
D图是使用4GHz的1158A单端探头和较长的测试引线的测试结果,显示的信号几乎是正弦波,失真较大。

fcb190b2-cfea-11ed-bfe3-dac502259ad0.jpg

图20不同探头附件测试结果对比

从图中可见探头和探头附件对测试精确度的影响是非常大的,是我们测试高速信号应该重点注意的内容之一。那我们应该如何验证探头和探头附件呢?
验证探头和探头附件需要使用一台脉冲码型发生器(如:81134A,3.35GHz速率,60ps边沿的脉冲码型发生器),如果示波器自带高速信号输出功能,也可以使用示波器的这个辅助输出口代替脉冲码型发生器(如: Infiniium示波器的AUX OUT端口可以发一个高速时钟:456MHz频率,约65ps边沿)。另外,需要同轴电缆和测试夹具(Infiniium示波器配置的探头校准夹具可以作为探头和探头附件验证测试夹具)。测试夹具的外表是地(Ground),里面走线是信号(Signal),如下图所示。使用时,通过同轴电缆把一端接到脉冲码型发生器或示波器的辅助输出AUX OUT端口,另外一端通过适配器连接到示波器的通道1上。

fcc9bef8-cfea-11ed-bfe3-dac502259ad0.jpg

图21探头验证夹具

然后把被验证的探头连接到通道2上,探头通过探头附件可以接触到测试夹具的信号和地(如果是差分探头,那么把+端连接到测试夹具的信号线,把-端连接到测试夹具的地上)。
1、如果探头不接触信号线,则屏幕上会出现一个原始波形,存为参考波形;
2、当用探头探测信号线时,通道1的波形会发生变化,这个变化后的波形就是被探头和探头附件影响后的被测信号;
3、这时,连接探头的通道2会出现一个波形,这个波形是探头测试到的波形;
4、通过对比参考波形,通道1的波形,和连接探头的通道2的波形,就可以直观的看出或通过测试参数读出三者的差别,可以验证探头和探头附件的影响。

fcdcda24-cfea-11ed-bfe3-dac502259ad0.jpg

图22探头验证连接和原理

下图是实际验证的一个例子,图A把示波器的AUX OUT通过同轴电缆连接到测试夹具,测试夹具的另一端通过SMA-PBNC适配器连接到示波器的一个通道上(此例连接到通道3),把探头连接到通道1上,此时调整屏幕上的波形,使得出现一个边沿阶跃波形,如图C所示,并把此波形存为参考波形。如图B把被验证探头和附件点测到测试夹具上,如图D所示,屏幕上出现3个波形,兰色的是参考波形,绿色的是受探头影响后的被测波形,黄色的是探头显示的波形,通过测试上升时间参数,过冲参数等,可确认探头和探头附件的性能。

fcef3c82-cfea-11ed-bfe3-dac502259ad0.jpg

图23探头验证实例


关键字:示波器  探头  应用范围 引用地址:示波器探头的选择和使用原理分析

上一篇:处理数字示波器测量问题
下一篇:CP8030H电流探头操作注意事项及异常处理方法

推荐阅读最新更新时间:2024-11-09 19:12

数字荧光示波器中随机采样技术的设计与实现
  实时采样技术是普通电子测量仪器中常用的信号采集手段,其对信号数据获取的能力受到仪器中A/D模块的最高采样率的限制。为了弥补这个限制,我们采用随机采样技术,这样对于器件的选用有很大的余地,可大幅度降低制造成本。   随机采样的原理   根据Nyquist采样定理,当信号的频率远远大于A/D的采样频率时,信号波形是无法重新构建的。所以对高速的信号可以采用随机采样。随机采样是通过测量每次A/D采样序列的起点和固定基准点(信号触发点)的时间差Δt,由于Δt具有随机性,所以通过对信号的n次采样,如果n足够大,通过随机采样序列的叠加就可以将信号波形恢复出来。其原理如图1所示。     由于每轮采样时,Δt是一个随机值,如果将取样周
[测试测量]
数字荧光<font color='red'>示波器</font>中随机采样技术的设计与实现
示波器基础(四)丨波的类型
您可以把大多数波分成下面几类 ■正弦波 ■方波和矩形波 ■锯齿波和三角波 ■阶跃和脉冲形状 ■周期信号和非周期信号 ■同步信号和异步信号 ■复合波 正弦波 基于多种原因,正弦波是基础波形。它拥有和谐的数学特点,在三角形教学中,您可能已经学过同样的正弦形状墙上插座中的电压以正弦波形式变化。信号发生器的振荡器电路生成的信号通常是正弦波。大多数AC电源生成正弦波。(AC表示交流,当然电压也会交替。DC表示直流,意味着稳定的电流和电压,如电池生成的电流和电压。)阻尼正弦波是电路中可能会看到的一个特例,它会振荡但随着时间推移而逐渐减小。 方波和矩形波 方波是另一种常见的波形。基本上,方波是一种以定期间隔开关(或变高和变低)的电压。它
[测试测量]
<font color='red'>示波器</font>基础(四)丨波的类型
示波器FFT进行频谱分析靠谱吗
示波器被评为最常用的电子调试工具,因其强大的功能和通用性被广泛的应用。但随着电子技术的发展工程师测试的复杂程度大大提升,会面临更快信号,更复杂的混合信号调试甚至很多信号的频谱分析工作,很多工程师们认为示波器FFT进行频谱分析不靠谱,有很多的缺点: 示波器FFT分析是通过调整水平时基来改变RBW,波西观测和频谱分析两者不可兼得。 进行很小RBW的测试场景,需要增大水平时基,严重影响了示波器处理速度。 操作方法不友好,无法直接设定频谱分析的条件。 只显示满屏信号的分析结果,无法在时域频域同时获得最优的信号呈现 动态范围有限…… 这些问题都越发让工程师头疼,难道真的要新买专业频谱分析仪才能解决这些问题吗?泰克示波器的
[测试测量]
<font color='red'>示波器</font>FFT进行频谱分析靠谱吗
直流电流探头测电流波形的方法
直流电流探头对示波器的测量至关重要,首先要求探头对探测的电路影响必须达到小,并希望对测量值保持足够的信号保真度。如果探头以任何方式改变信号或改变电路运行方式,示波器看到实际信号会失真比较严重,进而可能导致错误的或者误导性的测量结果。装置广泛应用于开关电源设计,LED电源设计,电机驱动等电力电子行业的电流参数的测量与分析。 直流电流探头特点: 高带宽、高精度。两个量程可供选择,方便小电流测量; 电流分辨率高。可测量mA级别小电流; 自动消磁调零功能,使用方便; 声光过流报警功能,提醒量程切换;电子轻触式按键设计,使用寿命更长; 外部供电,标准的BNC输出接口,可匹配任何厂家示波器。 直流电流探头可以精确测得电流波形,方法
[测试测量]
直流电流<font color='red'>探头</font>测电流波形的方法
教你用示波器频域方法分析电源噪声
  电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz。电源噪声,特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高、随机性强,对微机和数字电路易产生严重干扰。   示波器频域分析在电源调试的应用   本文谈到这么多年来最受关注的电源噪声测量问题,有最实用的经验总结,有实测案例佐证,有仿真分析相结合。   在电源噪声的分析过程中,比较经典的方法是使用示波器观察电源噪声波形并测量其幅值,据此判断电源噪声的来源。但是随着数字器件的电压逐步降低、电流逐步升高,电源设计难度增大,需要使用更加有效的测试手段来评估电源噪声。本文是使用频域方法分析电源噪声的一个案例,在观察时域波形无法定位故障时
[测试测量]
教你用<font color='red'>示波器</font>频域方法分析电源噪声
功率器件动态参数测试中的探头应用
功率器件动态参数测试 功率器件如场效应晶体管和绝缘门双极晶体管,这些器件提供了快速开关速度,能够耐受没有规律的电压峰值,被广泛应用于电源转换产品的设计。尤其第三代半导体Sic和GaN的快速发展和应用给电源行业带来了颠覆性的变化。也给设计工程师带来了很大的测试挑战。在此类产品的测试过程中,我们需要了解功率器件的动态特性。探头在此类测试系统中有着不可或缺的作用。 对应此类方案我们推荐使用ISOvU探头,探头可达800MHz带宽并有高达120dB共模抑制比,可以准确测试驱动信号的真实情况。 隔离差分系统探头参数表 隔离探头实物图 附:常见参数介绍 1. 带宽,代表了探头可测到的最大信号频率 2. 共模抑制比,代表了探头抑制共模
[测试测量]
功率器件动态参数测试中的<font color='red'>探头</font><font color='red'>应用</font>
示波器带宽是啥?效果阐明
假定没有满意的带宽,示波器将不能解析高频改动,崎岖将失真,边际将不见,细节将丢掉。假定没有满意的带宽,示波器的悉数功用和浮华都没有任何含义。 任何信号都能够分化成很屡次谐波的叠加,从频域来了解,带宽挑选的总准则是:带宽能掩盖被测信号各次谐波的99.9%的能量就满意了。带宽挑选的本源就在于:咱们不能直观地知道被测信号能量的99.9%对应的带宽是多少。 “示波器的带宽当然是越高越好”这句话从某种含义上是精确的:带宽越高,意味着能够精确丈量被测信号的带宽越高,或许完毕的信号复现精度就越高;示波器的带宽越高,那么示波器的上升时刻越小,丈量出上升时刻的精确度越高。可是带宽越高,价值越大,也越值钱。别的从运用视点来说,带宽越高未必越好。
[测试测量]
不同采样率对波形的影响-示波器实测案例分析
我们知道示波器的运作过程大致如下图所示: 我们通过探头给示波器输入一个信号,被测信号经过示波器前端的放大、衰减等信号调理电路后,然后高速ADC模数转换器进行信号采样和数字量化,示波器的采样率就是对输入信号进行模数转换时采样时钟的频率,通俗的讲就是采样间隔,每个采样间隔采集一个采样点。比如1GSa/s的采样率,代表示波器具备每秒钟采集10亿个采样点的能力,此时其采样间隔就是1纳秒。 对于实时示波器来说,目前普遍采用的是实时采样方式。所谓实时采样,就是对被测的波形信号进行等间隔的一次连续的高速采样,然后根据这些连续采样的样点重构或恢复波形。在实时采样过程中,很关键的一点是要保证示波器的采样率要比被测信号的变化快很多。 那么究竟要快
[测试测量]
不同采样率对波形的影响-<font color='red'>示波器</font>实测案例分析
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved