【泰克应用分享】如何实现MSO示波器更多通道的测试

发布者:EE小广播最新更新时间:2024-02-23 来源: EEWORLD关键字:泰克  MSO  示波器  测试 手机看文章 扫描二维码
随时随地手机看文章

本文以泰克4,5和6系列MSO为例,说明了多示波器同步的程序和原理。4,5和6系列MSO支持任意型号示波器之间的同步,从而实现更多通道的同步采集系统。


通道数量为何要求超过4个?


4系列B MSO示波器是同系列产品中首个推出6通道的型号,可满足用户多种测试应用场景。可应用于复杂粒子物理实验的捕获、多个电源轨的测量、三相电源转换器的分析等场景。测量可以包括串行总线中出现的电源串扰、分析射频干扰、同步观测输入/输出信号的传输等等。


人们也会通过同步多台示波器能够测量更多通道。在多通道应用或测量场景中,为了精确分析整个被测系统的时序关系,保持通道间的精确同步非常重要。

多示波器测量的考虑因素


软件


对于多示波器测量系统,软件可以发挥关键的作用。从最基本的层面来说,软件需要整合多台仪器的数据,并由软件进行仪器的触发和采集设置。软件还可提供组合波形的显示和分析功能。


另外,软件可以帮助完成相差校正。虽然用户可以通过编写自定义软件来完成这些任务,但比起繁琐的程序开发过程,TekScope PC分析软件直接提供这些功能,可以更加快捷高效地完成复杂的设置,让用户更专注于测试本身。在本应用指南中,TekScope PC软件将用于多示波器控制和采集,后面的章节介绍了该软件的使用方法。


系统配置


考虑测试系统的同步方法时,理解各种同步策略以及通道间容许的时序误差量非常重要。不同的线缆连接、触发和延迟补偿方法会对时序误差产生重大影响。示波器内外部(即线缆和探头)的通道延迟差异会导致通道之间的时序误差或“相差”。在决定同步策略时,首先需要回答几个关键问题。测试系统输入通道间可以容许多大相差?是所有的输入通道都需要满足严格的相差容许,还是只有部分通道需要?比如机电或人机应用的测量,零点几毫秒是可以容许的。然而,高速电子系统的测量就需要更高的同步性。

时序误差的来源


为了更好地理解时序误差的来源,可将其分为四种类型:


1. 触发抖动


触发抖动是时序误差的逐次采集变化。将示波器设置为无限余晖并观测一个与触发同步的信号时,可以看到这一现象。如图1a与图1c的差异所示。使用外部触发源或用探头的4、5、6系列MSO输入通道,抖动将小于10 ps。若采用辅助触发输入,会增加超过200 ps的抖动。


2. 示波器通道间的相差


4、5和6系列MSO规格书载明,使用探头时,模拟通道间的延迟将小于100 ps。


3. 各示波器外部触发器或探头的电缆传播延迟产生的相差


使用外部触发器和功分器时,电缆长度的任何差异都会导致约70 ps/cm的相差。如果每台示波器上使用相同的模拟探头作为触发源,相差应小于100 ps。如图1b所示。

 

image.png

图 1a:低相差和低抖动(最佳)。                              图 1b:高相差和低抖动。

 

image.png

图 1c:低相差和高抖动。                  图 1d:高相差和高抖动(最差)。

 

image.png

图 2:不同的触发设置导致不同的相差或延迟。左侧的设置将同一个触发信号使用相位匹配电缆馈送至两台仪器的触发通道。右侧的设置显示了“菊花链”的影响,其中一台示波器的辅助输出馈送至下一台示波器的辅助触发输入通道,导致明显的延迟。


4. 触发事件与辅助触发输出信号之间的相差。


当被触发示波器的辅助输出端口指定为触发输出信号时,存在1 µs 的固有相差。如不加以校正,对于大多数应用场景来说,该相差量可能过大。如果记录长度足够长,则可使用预触发延迟进行校正。如图2右侧所示。


使用外部源的低相差同步方法


最精确的同步技术是使用单个触发源,通过功分器(BNC或 SMA)将触发信号分离,将同一信号馈送到多台示波器,如图3所示。连接分离器和所有仪器的应该为相同长度的同类电缆(最好是相位匹配电缆),这样可以减小由于不同传播延迟导致的相差。

 

image.png

图3:辅助触发输入和时基参考均由分离器和匹配的50Ω电缆馈送。此设置在不牺牲每台示波器通道的情况下提供了最佳相差结果。使用输入通道代替辅助触发输入将减少测量通道的数量,触发抖动会减少约200 ps。


关于功分器


为了维持触发信号的完整性,我们采用高质量的功分器。该分离器充当平衡分压器,将50Ω触发源连接到50Ω电缆,再连接到示波器的50Ω输入。功分器(如图4所示)将电压分配到四条支路上,从而5V峰值触发器能为每条支路提供1.25 V的电压。请注意功分器的规格和触发信号要求。驱动4,5,6系列MSO的辅助触发输入的信号电平最好大于500 mV。提供的触发信号越大,示波器的触发系统响应越好,越稳定,相差结果就越好。


 image.png

图4:一个 SMA 功率分离器,连接到四根匹配的电缆和一个触发源


图3和图4所示是泰克推荐的同步配件:SMA高带宽4路功率分离器(泰克部件编号:174-6214-00)和4根匹配的SMA电缆(泰克部件编号:174-6212-00)。所示电缆在ps内匹配,以控制相差。


同步参考时钟


通过高保真10 MHz参考时钟锁定示波器的采样器也是非常重要的。这样可以消除时基之间的长期漂移效应,最大限度地减少了在跨度较大(>2ms)的通道间测量中的差量时间精度误差。


同步参考时钟有两种方法:


1.最好的方法是使用高稳定性的外部时钟,并使用一个功分器来馈送每个参考时钟输入。这与用于分离触发信号的方法类似,如图3和图4所示。


2. 另一种方法是使用一台示波器的内部参考时钟,并将其馈送到下一台示波器,如图5所示。而该示波器的辅助输出可为串联的下一台示波器的参考输入进行馈送,依此类推。这种方法适用于内部参考时基精度满足要求的情况。


无论哪种情况,对于接收10 MHz参考时钟的仪器,参考时钟源均应设置为外部。双击4,5,6系列MSO上的“Acquisition”(采集)标志,可找到该设置,如图6左侧所示。一旦发射和接收示波器配置并同步,时基参考源应显示绿色“Locked”(已锁定)指示。在输出参考时钟的仪器上,必须进入“Utility”(实用程序)菜单à,“Aux Out”(辅助输出)选择参考时钟,将参考时钟指定为辅助输出 ,如图6右侧所示。

 

image.png

图 5:使用来自一台波器的时基参考来馈送其他示波器。

 

图6:4,5和6系列MSO菜单,用于设置参考时钟并锁定时基参考。左侧是接收示波器上参考时钟设置。右侧是发射示波器上的输出参考时钟的设置。


使用TekScope PC–多示波器客户端和相差校正工具

 

image.png

图7:TekScope PC支持将4台示波器连接到一台电脑,并可在单个显示器上显示来自任何活动通道的信号。


TekScope™ PC分析软件是泰克提供的一款应用程序,非常适合多示波器配置。该软件的操作方式与4/5/6系列MSO用户界面相同,但在Windows电脑上远程运行。使用TekScope可以连接多台示波器,并在单个界面上显示所有波形,就和在单台示波器上运行一样。该软件还能将所有连接示波器的全部数据保存在一个文件里。


配置 TekScope PC 用于多示波器应用


连接4, 5 或 6 系列 MSO 示波器非常简单。单击“Add New Scope”(添加示波器)标志,将添加一台新示波器。 双击示波器标志,输入IP地址,然后连接,如图 8所示。

 

image.png

图 8:在 TekScope PC 中使用“Add New Scope”(添加示波器)标志,添加额外的示波器连接。

 image.png

图 9:连接示波器以后,将显示或隐藏其他通道。


使用 TekScope 对多示波器系统进行相差校正


相差校正过程包括测量及消除不同示波器通道之间的相差。

 

image.png

图10:触发信号被分离并接入辅助输入端口,校准信号被分离并接入到每台示波器上的通道1。


需要将非触发信号的时钟信号接入到两个待校正相差的通道上,如图10所示。该信号应具有快速上升时间(例如50 ps)。使用 TekScope PC一次连接两台示波器。选择一个通道作为参考,如图11所示。

 

image.png

图 11:相同的信号接入到待校正相差的两个通道。


下一步是叠加显示两个通道,如图12所示。然后,放大信号的前缘,这样就可以使用光标来测量差量时间,如图13所示。

 

image.png

图 12:待校正相差的信号被放大并以叠加模式显示。

 image.png

图 13:测量不同示波器上两个通道之间的差量时间

现在需要消除通道间存在的相差。双击该通道的垂直菜单。在“Deskew”(相差校正)设置中输入测得的差量时间。如图14所示。所有通道都必须重复以上操作。

 

image.png

图 14:在通道垂直徽章标志的“Deskew”(相差校正)设置中输入测得的差量时间,可校正两通道间的相差。


总结


本技术简介介绍了使用4,5和6系列MSO示波器和TekScope PC分析软件同步多示波器测量系统的方法。 4,5和6系列MSO支持任意型号示波器之间的同步,从而实现更多通道的同步采集系统。

关键字:泰克  MSO  示波器  测试 引用地址:【泰克应用分享】如何实现MSO示波器更多通道的测试

上一篇:是德科技推出带宽超过50 GHz示波器探头
下一篇:客户案例 | 多通道数模转换器ADC动静态参数测试解决方案

推荐阅读最新更新时间:2024-11-05 21:32

中国LED芯片测试和分选技术获得突破
   据了解,LED芯片测试和分选技术,是继LED芯片和外延片后,困扰我国LED行业的另一个重大技术难题。不过,日前已被志成华科率先突破。并成功研发设计了LED芯片自动测试与分选设备,正酝酿开展产业化。据悉目前,志成华科已准备了近20套设备所需的生产材料,准备着手量产。     志成华科不久前研发生产了LED芯片进行测试分选设备的第三代,有两台设备产品在企业试运行。志成华科设备组装部部长杜发强说,“到目前为止,设备试运行的效果相当理想。”     志成华科的LED芯片自动测试与分选技术,是产学研结合“产业共性技术”的重大科技专项项目。经过3年多的研发设计,去年9月成功通过验收,相关成果已经形成专利30多项。不久前研发生产了
[工业控制]
电压比较器VIO的开环测试
输入失调电压(VIO)是电压比较器(以下简称比较器)一个重要的电性能参数,GB/T 6798-1996中,将其定义为“使输出电压为规定值时,两输入端间所加的直流补偿电压”。传统测试设备大都采用“被测器件(DUT,Device Under Test)-辅助运放”的测试模式,测试原理图见图1。 在辅助运放A的作用下,整个系统构成稳定的闭环网络,从而使VD=0,则 VC = -VS1·R1/R2 这样,调节外加电源VS1即可控制DUT的输出。当VC等于规定电压时, VIO = VA - VB 显然 又VB=0 通过测量辅助运放A的输出电压VE,便可换算出VIO。 在上述的闭环回路中,DUT工作状
[测试测量]
电压比较器VIO的开环<font color='red'>测试</font>
基于FPGA的数字示波器设计
  随着信息技术的发展,对信号的测量技术要求越来越高,示波器的使用越来越广泛。模拟示波器使用前需要进行校正,使用比较麻烦;而数字示波器,由于受核心控制芯片的影响,对输入信号的频率有严格的限制。基于FPGA的数字示波器,其核心芯片可达到50万门,配合高速外围电路,可以测量频率为1 MHz的信号,有效地克服了以往示波器的不足。   1 系统方案设计   设计的数字示波器系统主要使用了Xilinx系统的开发环境,并在此环境内部建立了AD采样控制模块、键盘控制模块、VGA显示模块等多个模块,从很大程度上减少了硬件电路的搭建,也因此提高了系统的稳定性和可靠性,系统框图如图1所示。      另外,设计使用XPS将32位的MicroB
[测试测量]
基于FPGA的数字<font color='red'>示波器</font>设计
基于开路电压的电池监视器电路的编程及测试
引言 基于开路电压(OCV)的电量计DS2786在出厂时将默认的OCV特性和默认配置加载到EEPROM中。为了提高OCV电量计的精度并使DS2786适应特定的应用场合,必要时需对DS2796的EEPROM进行再编程。本文描述了如何对EEPROM进行编程及如何对已经安装好的电路板进行测试。 板极测试 下文给出了一个安装电池包之前测试基于DS2786 OCV电路板的例子。图1为电路板的电路原理图,用到了DS2786的所有功能。图中所有重要的测试点(共7个)都用带圈数字标出。测试流程假定电路中的所有分立元件已经过测试,因此,测试目的为确认线路连接,从而验证安装的电路板是否正确。                        
[电源管理]
基于开路电压的电池监视器电路的编程及<font color='red'>测试</font>
使用混合信号示波器调试嵌入式混合信号设计
今天基于微控制器(MCU)和数字信号处理器(DSP)的嵌入式设计一般都会同时带 有模拟信号和数字信号成分。传统上,设计师是用示波器和逻辑分析仪进行测试和调 试;而现在,新一类测量工具——混合信号示波器(MSO)——已经能够提供更好的 方法来调试这些 MCU 基和 DSP 基混合信号嵌入式设计。 虽然 混合信号示波器MSO 在市场上出现已将近 20 年,但大多数工程师却从未接触过这种仪器,许 多工程师对它们的好处和使用方式存在着误解。许多示波器厂商都推出了融有模拟和 数字时间相关测量能力的混合型时域仪器,但您一定要清楚这些仪器的差别,确切了 解它们能做什么和不能做什么。 本文首先从混合信号示波器的定义开始,简要介绍了 MSO 所适应
[测试测量]
使用混合信号<font color='red'>示波器</font>调试嵌入式混合信号设计
安捷伦推出业界最高性能的示波器
安捷伦科技公司推出最新款 Infiniium Z 系列多通道示波器平台。新产品能够同步多达10台示波器,每台示波器的实时带宽高达63 GHz,多通道平台支持多达40 个通道同时测量。Z 系列示波器拥有业界最出色的测量本底噪声和本底抖动,其采用的新技术能够帮助工程师高效完成测试,更容易让工程师的精力集中在被测对象上,并且性能登上新台阶。 Z 系列包括 10 款型号,涵盖 20GHz 至 63 GHz 的范围,并且所有型号的带宽都可升级为 63 GHz。此外,Z 系列产品的处理速度显著提高,并采用了新一代用户操作界面。 安捷伦副总裁兼示波器与协议事业部总经理 Jay Alexander 表示:“Z 系列将进一步巩固安捷伦在高端
[测试测量]
使用非信令技术改进移动设备的射频测试
  目前,许多无线设备都结合了GSM、WCDMA、蓝牙、WLAN、GPS 和调频技术,并支持移动因特网所需高数据速率。而且,由于客户要求在任何大洲都能使用移动无线服务,因此许多设备还要工作在多频带并能支持多模操作。   对于客户而言,具备所有这些功能是很好的事情,但它们给测试工程师却带来了挑战。每种添加的额外技术和频带都额外增加了测试工作,由此导致生产测试过程的时间更长,测试成本因此而增加。这显然与人们希望降低移动通信产品价格的期望不符。成本的限制使得制造商需要采用全新的测试方法。幸运的是,使用非信令测试理念和预定义的测试序列,我们能把测试时间缩短到原来的十分之一。    射频设备调整两步法   按照节约成本措施制造的射频
[测试测量]
使用非信令技术改进移动设备的射频<font color='red'>测试</font>
【“源”察秋毫系列】柔性可穿戴电子设备材料的导电测试
柔性可穿戴电子设备主要由柔性压阻传感器材料、柔性传感器框架、电极连接、信号采集和处理电路组成。 其中最重要的部分就是对柔性压阻传感器材料的测试,对于用于制造压阻式传感器的材料 , 需要全面评估其电学、机械、动态响应和环境稳定性等多方面性能指标 , 以确保材料能够满足实际应用的需求。 对于柔性材料,其中电学需要测试其导电性能,测试材料的电导率和电阻率,和材料中导电填料的分散性和接触性能,材料的电导率和电阻率决定了传感器的基本电学特性, 影响传感器的灵敏度和响应速度,导电填料的分散性和接触性能决定了材料的整体导电性能。 对于柔性设备,还需要循环测试材料在不同弯曲程度下的输出电压,查看其结果是否为一个稳定值,以此来评价其是否稳定
[工业控制]
【“源”察秋毫系列】柔性可穿戴电子设备材料的导电<font color='red'>测试</font>
小广播
最新测试测量文章
换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved