同步调谐可变带通滤波器的设计

发布者:Howard_Sun最新更新时间:2007-06-28 来源: 国外电子测量技术关键字:频率  串联  带宽  阻抗 手机看文章 扫描二维码
随时随地手机看文章

引 言

许多电子测量仪器(例如频谱分析仪、网络分析仪、接收机等)在它们的中频滤波电路中或其他地方都需要用到中心频率固定而带宽连续可变的带通滤波器,因此这类滤波器在测量仪器中的应用是非常广泛的。下面将对同步调谐滤波器实现可变滤波器的设计原理和实际电路设计做详细介绍。

1 设计原理

设计一个范围很宽且连续可变的带通滤波器,从实际调试的角度来看,希望所设计的滤波器具有良好的滤波响应和陡峭的通带一阻带过渡,而单个带通滤波器是无法实现这个目标的,通过级联多个基本单元就可以得到高性能的滤波器,同步调谐滤波器正是利用这一点实现的。同步调谐滤波器就是由多个具有相同中心频率和品质因子Q的滤波器通过缓冲级相连而构成的滤波器。同步调谐滤波器具有很多优点,因为它对每一级滤波器的带宽或中心频率等指标的较小误差敏感度不高,构成它的一级滤波器的Q值要比总的滤波器的Q值小,所以它在实际应用中比较容易调节。

传统的减小带通滤波器Q值的方法是在一个带通滤波器上加一个串联电阻。以同步调谐滤波器其中的一级为例(见图1),未加串联电阻RS之前,该滤波器的带宽BWP可表示为:

式中:RP为滤波电路的等效并联阻抗和缓冲放大电路输入阻抗的和。

加入Rs后,该滤波器的带宽将发生变化,此时的带宽用BWS表示:

此时等效的并联阻抗相当于RS和RP的并联值,小于未加RS前的RP,从而导致带宽变大,Q变小,所以RS的作用相当于减小了电路的Q值。如果连续调节RS的大小,就可以实现带宽的连续变化。

通过串联N级这样的滤波电路,就可以形成一个能实现所需带宽的同步调谐滤波器,N级同步调谐滤波器的带宽BWtotal和其中一级带宽BWsection之间的关系可用式(3)表示为:

式中:N为组成同步调谐滤波器的级数。

在电子测量仪器中,常用的N为4或5,所以每一级的带宽大约是总带宽的2.3或2.6倍。

2 实际电路的改进思想

实际电路中为了实现同步调谐滤波器的带宽连续可变,RS阻值的变化往往是通过PIN二极管来实现的,这是利用了PIN二极管的一个重要特征。在外加电压为正向时,在某个特定的状态下它在射频频率下几乎可以表现为一个纯阻的状态,而且这个电阻值可以在一定范围内随着控制PIN二极管的电流的大小而变化。设fc=1/2πτ,τ为载流子时间,当PIN二级管工作频率大于10fc时,PIN二极管的电阻 与流过它的电流的关系就可以用式(4)来表示:

式中:RI为对应的射频阻抗;Idc为流过PIN二极管的电流;对于同一个PIN二极管,K和x是常数。

通常为了减小电压引起的失真,会用多个PIN二极管串联来代替Rs,同时为了减少输入级放大器QIN输出电阻和输出级放大器QOUT输入电阻对谐振阻抗的影响,在选择这2个放大器时应加以注意,一般说来应选择输出电阻较低的放大器作为QIN,选用输入阻抗较大的放大器做为QOUT。由于场效应管栅源间的电阻很大,即使是结型场效应管,其栅源电阻也可以达到107Ω以上,所以往往会选用它做为QOUT,但是选用场效应管时应注意其结电容的大小,为了减小失真,应选用结电容的值远小于RLC谐振电路中的电容值的管子。

这样通过调节PIN二极管的电流就可以在很宽的范围内改变滤波器的带宽,实际电路上是通过D/A转换器来控制PIN二极管的电流大小。图2则是根据上述理论设计的一频谱分析仪中频滤波电路的一级滤波器的原理图。图2中控制4个串联的PIN二极管的控制线名称为带宽控制线,它就是来自一个D/A牟专换电路的输出电压,通过程控这个电压的变化,改变流过这些PIN二极管的电流,从而改变滤波器的带宽。变容二极管也是通过一路D/A转换电路的输出电压来改变电容的大小,通过调节这个电容和可调电感就可以调整滤波器的中心频率,4级这样相同的电路级联,就实现了一个中心频率为10.7 MHz,带宽从300 Hz变化到2 MHz的带通滤波器,在频谱分析仪的显示屏上可以通过改变分辨率带宽(RBW)清楚地观察到其中频滤波器的变化。

但是,采用这种方法改变滤波器的带宽存在以下问题:PIN二极管等效的串联电阻RS和等效的并联电阻RP之间会有一个电压的分压,当改变串联电阻的值时,不仅滤波器的带宽发生了改变,同时滤波器的插损也发生改变,从而导致信号的幅度随着滤波器带宽的变化而发生变化,所以需要采取相应的方法对这种幅度的变化进行补偿。

下面介绍一种比较经典的幅度补偿方法,如图3所示。这种方法在许多测量仪器的滤波器电路中都有应用,这种方法的核心思想是通过加补偿电阻Rd将一个合适大小的电压补偿到输出节点O处,从而抵消由于串联Rs而导致的电压变化。其中,系数A是一个关键量,为了保持O点处的电压VO总等于VINPUT,通过基尔霍夫电流定理由式(5)得到A:


可见,系数A只与Rd和Rp有关,Rp足由环路的Q值和输出缓冲放大器的输入电阻决定的,它不会随着带宽的变化而变化,所以,只通过调节Rd就可以补偿每一级滤波器由于引入串联电阻Rs而引起的幅度的变化。至于温度引起的Rp的变化,可以通过将Rd采用热敏电阻的方法加以补偿。

在实际测量仪器的中频滤波器设计中,为了减少引入大量噪声和失真,往往采用将输入电压VINPUT通过合适比例的变压器产生AVINPUT的方法来实现。图4为利用变压比为1:4的变压器实现正反馈进行幅度补偿的示意图:将VINPUT接入变压器的初级线圈,将变压器的次级线圈的励磁电感作为RLC电路中的L。


要使VO等于VINPUT,则变压器初级线圈的电压V1应等于VO/4,其中比例系数A为1/4。由变压器传输关系可知:RP等效到初级线圈的电阻R1=(1/16)RP。

因为:VO=VINPUT,R1=(1/16)RP

则:Rd=(3/16)RP。

所以当取Rd=(3/16)RP时,电压VO将等于输入电压VINPUT,这样就很好地消除了由于串联RS而引起的信号幅度的变化。将图4中相同的儿级滤波器串联就可以在信号幅度不发生变化的情况下实现带宽的连续变化,这种电路通常工作在几十MHz的频率上。随着工作频率的提高,信号的波长就相应减小,当波长小到与电路元件的几何尺寸可以相比拟时,电压和电流不再保持空间不变性,此时的基尔霍夫电压和电流定律都将不适应,所以上述推导将不再适用。以频谱分析仪为例,它通常工作在10.7 MHz或21.4 MHz中心频率上,在最大带宽≤10 MHz时,采用上述方法实现中频滤波器是非常有效的。

3 结束语

同步调谐可变滤波器的设计思想在多种国内外测量仪器的模拟中频方面都得到了广泛的应用。它不但能实现连续可调的带宽,而且插损较小,很好地解决了滤波器带宽变化时通过它的信号幅度不变化的问题,更方便于仪器中对中频信号的校准。

关键字:频率  串联  带宽  阻抗 引用地址:同步调谐可变带通滤波器的设计

上一篇:基于模糊控制的便携式心电监护仪的设计
下一篇:基于AT89C51和DS18B20的最简温度测量系统

推荐阅读最新更新时间:2024-03-30 22:05

ARM7 LPC2138数字频率计的设计源码与报告
1.1、设计原理 频率就是周期性信号在单位时间(1s)内变化的次数。若在一定时间间隔T内测得这个周期性信号的重复变化次数为N,则其频率可表示为f=N/T。其中f为被测信号的频率,N为计数器所累计的脉冲个数,T为N个脉冲所产生的时间。计数器所记录的结果就是被测信号的频率计数法又称测频法,是将被测信号通过一个定时闸门加到计数器进行计数的方法,如果闸门打开的时间为T,计数器得到的计数值为N1,则被测频率为f=N1/T。改变时间T,则可改变测量频率范围。设在T期间,计数器的精确计数值应为N,根据计数器的计数特性可知,N1的绝对误差是N1=N+1,N1的相对误差为ΔN1=(N1-N)/N=1/N。由N1的相对误差可知,N的数值愈大,相对误
[单片机]
ARM7 LPC2138数字<font color='red'>频率</font>计的设计源码与报告
DS31415高性能频率转换和合成的集成电路
DS31415是一个灵活的,高性能的不同频率转换时间和频率合成中的应用集成电路。就其三个输入和四个输出时钟时钟,每个设备可以接受几乎任何关系或产生2kHz和750MHz的频率。   输入时钟分频,分数比例根据需要,不断为监测活动和频率精度。输入时钟的最佳选择,手动或自动,作为在器件其它部分参考时钟。一个灵活的,高性能数字锁相环锁定到选定的参考,并提供可编程的带宽,非常高的分辨率缓缴能力,真正无中断输入时钟之间切换。数字锁相环后跟一个时钟合成子系统,已与自己的32位分频器,相位调整两个完全可编程的数字频率合成块,一个高速低抖动APLL的,和四个输出时钟,每个。 APLL的规定分数的缩放和输出抖动比1ps RMS的少。对于电信系统
[模拟电子]
AGP、PCI-E总线带宽的计算方法
总线是一组进行互连和传输信息(指令、数据和地址)的信号线。主要参数有总线位宽、总线时钟频率和总线传输速率。/传统的PCI并行总线和最新的PCI-E串行总线带宽介绍 总线是一组进行互连和传输信息(指令、数据和地址)的信号线。主要参数有总线位宽、总线时钟频率和总线传输速率。 ※总线位宽决定输入/输出设备之间一次数据传输的信息量,用位(bit)表示,如总线宽度为8位、16位、32位和64位。 ※总线时钟频率是总线的工作频率,以 MHz 表示。 ※总线传输速率是总线上每秒钟所能传输的最大字节数。通过总线宽度和总线时钟频率来计算总线传输速率。 一. 并行总线。 并行总线带宽(MB/s) = 并行总线时钟频率(MHz) x 并行总线位宽(bit
[嵌入式]
变频器为什么使用制动电阻?
在变频调速系统中,电机的降速和停机是通过逐渐减小频率来实现的,在频率减小的瞬间,电机的同步转速随之下降,而由于机械惯性的原因,电机的转子转速未变。当同步转速小于转子转速时,转子电流的相位几乎改变了180度,电机从电动状态变为发电状态; 与此同时,电机轴上的转矩变成了制动转矩,使电机的转速迅速下降,电机处于再生制动状态。电机再生的电能经续流二极管全波整流后反馈到直流电路。由于直流电路的电能无法通过整流桥回馈到电网,仅靠变频器本身的电容吸收,虽然其他部分能消耗电能, 但电容仍有短时间的电荷堆积,形成“泵升电压”,使直流电压升高。过高的直流电压将使各部分器件受到损害。因此在机械惯性比较大的系统中,需要采用制动电阻,如升降机、数控
[嵌入式]
变频器为什么使用制动电阻?
变频器有正转信号,但频率始终为零,怎么办?
故障现象: 变频器上电后,启动变频器,使能正转端子与公共端接通!变频器RUN灯亮起!用户多次通过 人机界面给变频器运行频率后,变频器无反应,且频率始终为零! 变频器的频率已设定由外部端子给定,这台变频器是控制牵引机电机的,因为本厂是生产管道的,需要有电机牵引管子生产!变频器和电机的组合我们称它为牵引机!变频器就是来驱动这两台电机。 变频器的频率是用户通过人机界面写入PLC(本PLC为西门子S7——200); 然后由PLC给频率给变频器!人机界面上的牵引速度,设定,就是说的给这台变频器的频率! 当用户将需要的速度通过人机界面写入到PLC后,然后由PLC的扩展模块EM232(模拟量输出模块),输出一个0V到10V的电压,给
[嵌入式]
变频器有正转信号,但<font color='red'>频率</font>始终为零,怎么办?
宽带测量技术白皮书
1.复杂电子系统的发展及其测量需求 典型的复杂电子系统主要有:宽带雷达,捷变频电台,电子对抗,宽带无线通信,卫星通信等系统。 射频微波电路是复杂电子系统的重要组成部分,主要完成发射和接收信号的功率控制和频率搬移,对整个电子系统灵敏度,动态范围等指标有决定性的影响。典型的射频微波电路包含天线,放大器,滤波器,频率合成器,传输线等有源和无源电路。随着系统功能和性能要求的提高,电子系统对这些射频微波电路的要求越来越高,带宽要求越来越宽,很多系统要求500MHz或1GHz以上的带宽。 高速数字电路是复杂电子系统的另一重要组成部分,主要完成复杂信号的生成,复杂信号的处理,大数据量和高速信号的传输,对整个电子系统工作速
[测试测量]
宽带测量技术白皮书
基于DSP的话音带宽短波信道模拟器
摘要:介绍了一种基于DSP平台的话音带宽波信道模拟器。该模拟器不仅可以提供短波信道的主要特点,如多径传输、瑞利衰落、多普勒频移等,而且实现了对传输信号的全数字化实时处理。 关键词:数字信号处理 短波通信 信道模拟 瑞利衰落 为了测试短波(高频)通信设备的性能,通常需要在实际通信环境中进行大量的外场实验。相比之下,信道模拟器能够在实验室环境下进行类似的性能测试,测试费用少、可重复性强,而且可以缩短设备的研制周期。 短波信道是随机变参信道,根据一些统计规律,可以有所侧重地建立近似的信道模型。目前,比较有代表性的信道模型有:Watterson等人提出的高斯散射增益抽头延迟线模型(简称Watterson模型)、Hoffm
[应用]
FA5310开关电源控制IC及其应用
1引言 许多电子系统都需要开关电源。开关电源的电路多种多样,其中已有许多采用控制芯片。控制芯片只要再外接一些器件即可组成开关电源,从而大大简化了电路设计。 FA5310是日本富士电机公司的产品,它具有多种保护功能,外接电路简单,有很大的实用价值。FA5310具有以下特点: 可直接驱动功率MOSFET(I0=±1.5A);宽工作频率范围(5~600kHz);具有逐个脉冲过流限制功能;有过载切断功能(可选用锁定或无保护模式);可用外部信号控制输出ON/OFF;有过压切断功能(锁定模式中)和欠压误动作保护功能(16V时导通,8.7V时关断);等待电流低(90μA);占空比为Dmax=46%,可用于正激和反激电路。 图1为FA5310的
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新测试测量文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved