基于SA7527的LED照明驱动电路的设计

发布者:liliukan最新更新时间:2011-07-13 关键字:SA7527  LED照明  驱动电路 手机看文章 扫描二维码
随时随地手机看文章
  随着社会的发展,人们越来越提倡绿色照明,LED日光灯作为其中一种正在被广泛使用,LED日光灯相对于普通的日光灯具备节能、寿命长、适用性好等特点,因单颗LED的体积小,可以做成任何形状,拥有回应时间短、环保、无有害金属、废气物容易回收、色彩绚丽、发光色彩纯正等优势。本文通过SA7527设计的一款LED日光灯驱动电路,稳定可靠性比较好,不仅能够降低日光灯的成本,提高它的转化效率,还可以实现恒流恒压输出,同时能驱动不同功率的LED。

一、电路的设计

  1.电路组成

  全电路由抗浪涌保护、EMI 滤波、全桥整流、反激式变换器、PWMLED驱动控制器、闭环反馈电路组成,如图1。

 

  

  图1 基于SA7527的LED驱动电路框图

  2.主电路分析

  主电路如图2所示。从AC220V看去,交流市电入口接有熔丝F1和抗浪涌的压敏电阻RV1,熔丝起到线路输入电路过流保护的作用,压敏电阻RV1用来抑制来自电网的瞬时高电压保护输入线路的安全,之后是EMI滤波器,L1,L2,C1是共模滤波器,L3,L4,C2是差模滤波器,DB107是全桥整流电路,C13是一个电容滤波器,经过整流后的电压(电流)仍然是有脉冲的直流电。为了减少波动,通常要加滤波器,由R19,C8,D5组成的RCD缓冲电路是为了防止功率管Q1在关断过程中承受大反压,缓冲电路的二极管一般选择快速恢复二极管。

  输出滤波器C10,C11,C12并联是为了减少电压纹波

  本电路的特点: ( 1 ) 宽电压输入范围;(2)恒流/恒压特性;(3)由LM358组成的输出反馈取样与恒流/恒压控制电路,成本低,控制精度高,调试简单; (4)本电路可以驱动不同功率的LED。

  3.启动电路的设计

  启动电路如图2所示。为了使电路正常启动,应该在整流桥整流后的变压器初级线圈与SA7527的供电电压端8脚之间连接一个启动电阻R20,并在8脚与地之间连接一个启动电容C9。接通电源时,流过启动电阻R20的电流对启动电容C9充电。当C9的充电电压达到启动门限电压(典型值为11.5V)后,SA7527导通,并驱动功率管Q1开始工作。整流后电压的最大值和最小值分别用U imax和U imin来表示,I STmax为最大启动电流,V th(st)max为启动门限电压最大值,启动电阻R20由下列公式(1)和公式(2)来确定,该电阻应选择功率电阻,最大消耗功率不能超过1W。

  

  图2 主电路和启动电路

  启动电容C9应由下式来确定:

  

  式中,I dcc为动态工作电流;f ac为交流电网频率;HY (ST)为欠电压锁定滞后电压。

  4.控制电路的设计

  4.1芯片介绍

  SA7527是一个简单而且高效的功率因子校正芯片。此电路适用于电子镇流器和所需体积小、功耗低、外围器件少的高密度电源。

  4.2控制方法的分析

  控制电路如图3所示。该控制电路是峰值电流控制模式,当功率管Q1导通时,二极管D6,D7截止,变压器T1的原边电感电流线性上升,当电流上升到乘法器输出电流基准时关断功率管Q1;当功率管Q1关断时,二极管D6,D7导通,电感电流从峰值开始线性下降,一旦电感电流降到零时,被零电流检测电阻检测到,功率管Q1再次导通,开始一个新的开关周期,如此反复。

  图3 控制电路

  4.3零电流检测电阻的设计

  零电流检测端外围电路如图4所示。MOSFET功率管利用零电流检测器导通,并且在峰值电感电流达到由乘法器输出设定的门限电平时关断。

 

  

  图4 零电流检测端外围电路

 

  一旦电感电流沿向下的斜坡降至零电平,SA7527的零电流检测器通过连接于5脚的变压器副绕组电压极性的反转进行检测,SA7527的7脚产生输出,驱动MOSFET功率管又开始导通。当电感电流沿向上的斜坡从零增加到峰值之后,MOSFET功率管则开始关断。直到电感电流降至零之前,MOSFET功率管一直截止。由芯片介绍资料可知,零电流检测端电流最大不能超过3mA,因此零电流检测电阻R25由下式来确定。

  

  式中,Vcc为芯片供电电压。

  4.4输入电压检测电阻的设计

  乘法器外围电路如图5所示。交流输入经整流后得到一个半波正弦形状的电压波形,为了使输入电流较好地跟踪输入电压波形,我们要在交流输入整流后进行电压采样,经电阻R21和R22分压后,电压约缩小100倍输入到SA7527的3脚,在电阻R2并联一个电容C15除整流后的电压纹波。由芯片的内部结构可知,乘法器输入端3脚电压在3.8V以下可以保证较好的功率因数校正效果。

乘法器外围电路

图5 乘法器外围电路

  因此应满足3脚的最大输入电压不超过3.8V,即:

  4.5电流感应电阻的设计

  电流检测外围电路如图6所示。

电流检测外围电路

图6 电流检测外围电路

  电路采用峰值电流检测法,因此在MOSFET功率管的源极与地之间接上一个电流感应电阻R24,MOSFET功率管的源极端接在SA7527的电流感应端4脚CS端,一般的应用电路中会在电流感应电阻后接上一个RC滤波电路以滤去开关电流的尖峰,因为SA7527芯片内部已经有RC滤波电路,所以这里不必加外围RC滤波电路,从而减少了SA7527的外部元件数量。电流感测比较器采用RS锁存结构,可以保证在给定的周期之内在驱动输出端仅有一个信号脉冲出现。当电流感应电阻两端的感应电压超过了乘法器的输出端门限电压时,电流感应比较器就会关断MOSFET功率管并且复位PWM锁存器。电感电流的峰值在正常情况下由乘法器的输出Vmo来控制,但压是当在输入电压太高或者输出电压误差放大器检测出现问题时,电流感应端的门限电值就会在内部被钳位在1.8V。这是由于芯片内部的电流感应比较器的反相输入端接有一个1.8V的稳压二极管,因此电流感应电阻的取值要满足公式(6)和公式(7)两个条件。

  其中

  K为乘法器增益,ΔVm2 =Vm2 -Vref ,为电压误差放大器的输出与芯片内部参考电压的差值。

  4.6闭环反馈电路的设计

  闭环反馈电路如图7所示。该电路是一个恒流恒压输出电路,它是由双运放LM358和TL431构成的电流控制环和电压控制环,先恒流后恒压,先是电流采样,D2导通,D1截止,实现恒流,然后是电压采样,D1导通,D2截止,实现恒压。

  图7 闭环反馈电路

  电流控制环:TL431是精密电压调整器,阴极K与控制极R直接短路构成精密的2.5V基准电压。该电压由R11送到LM358的5脚(同相输入端),R5直接从输出端采样电流,将电流转换成电压,再将电压值送到LM358的6脚(反相输入端),将同相输入端的电压和反相输入端的电压进行比较,并在7脚输出高低电平来控制流过光耦EL817的导通与关断,进而通过SA7527控制变压器一次侧输出占空比的大小,达到稳定输出电流的结果,C1,R3为反相输入端与输出端的反馈元件,可通过调整其数值来调整放大器的反馈增益。当电路接P5端口时,输出电流的大小为:

  

  其他端口同例。

  电压控制环:TL431是精密电压调整器,阴极K与控制极R直接短路构成精密的2.5V基准电压。该电压由R10送到LM358的3脚(同相输入端),R7直接从输出端采样电压,R7,R9组成分压电路,将分压值送到LM358的2脚(反相输入端),将同相输入端的电压和反相输入端的电压进行比较,并在1脚输出高低电平来控制流过光耦EL817的导通与关断,进而通过SA7527控制变压器一次侧输出占空比的大小,达到稳定输出电压的结果,C3,R8为反相输入端与输出端的反馈元件,可通过调整其数值来调整放大器的反馈增益。当电路接P1端口时,P1端口的输出电压为:

  

        其他端口同例。

二、电压控制环和电流控制环的建模与仿真

  1.电压控制环的建模与仿真

  首先一个重要的中间量是TL431阴极电压变化量k Δv 与输出波动o Δv的关系式为:

  

  其中

  

  阴极的电压变化引起光耦二极管电流变化:

  

  高压感应侧光电流变化:

  

  其中

  

  

  反馈网络

  

  组成控制框图如图8所示。

 

  

  图8 电压环结构

 

  系统的开环传递函数:

  

  将R 2=4.7KΩ,R 7=150kΩ,R 8 = 2 。 2 k Ω ,R 9 = 4 。 7 k Ω ,R 19=1kΩ,C 3=1mF,CTR =100%,101 pwm k= L? f = 代入式1 6 中, 用MATLAB仿真得到电压控制环的波特图如图9所示。交越频率4.8KHZ,相位裕量100o。

 

  

  图9 电压环的波特图

 

  2.电流环控制环的建模和仿真

  

  系统的开环传递函数:

  

  将R 2 = 4 。 7 k Ω ,R 3 = 2 。 2 k Ω ,R 4 = 2 。 2 k Ω ,R 5 = 0 。 3 6 Ω ,R 19=1kΩ,C 1=1mF ,CTR =100%,101 pwm k= L? f = 代入式1 9 中, 用MATLAB仿真得到电压控制环的波特图如图10所示。交越频率220kHz,相位裕量46°。

 

  

  图10 电流环结构

三、实验结果分析

 

  搭建一个18W的实验电路接入电源,用各种仪器测试的波形图如图11、图12、图13和图14所示。从上面波形图可以看出,输出电流电压能够恒流恒压输出,电路效率达到85%以上,功率因素(PF)达到90%左右。

 

  

  图11 电流环的波特图

  

  图12 电流电压输出波形

  

  图13 输入电压和效率曲线

  

  图14 输入电压和功率因数曲线

结论

  LED日光灯是一种绿色光源,有着非常广泛的应用前景。通过仿真和实验验证,本电路能宽电压输入,恒流恒压输出,电流控制环和电压控制环不仅响应速度快而且稳定,输出电流电压都很稳定,电路的效率达到85%以上,达到了满意的效果,该电路还有多个端口,能够驱动不同功率的LED,能够在实际生活中应用。

关键字:SA7527  LED照明  驱动电路 引用地址:基于SA7527的LED照明驱动电路的设计

上一篇:基于SA7527的LED照明驱动电路的设计
下一篇:基于SA7527的LED照明驱动电路的设计

推荐阅读最新更新时间:2024-03-16 10:57

基于双向变换技术的光伏LED照明系统设计
1 引言 太阳能是一种巨大、无尽、清洁的绿色能源,LED也是一种环保、节能、高效的固态电光源,将体照明,是最佳的节能、环保组合。独立光伏LED照明系统主要由光伏电池阵列、蓄电池、LED照明设备、充电电路、LED驱动电路和控制器组成。光伏电池板是整个系统最昂贵的部件,为有效利用太阳能,需对系统进行MPPT;蓄电池是系统最脆弱的部件,为延长蓄电池使用寿命,需根据蓄电池特性对蓄电池进行充电和放电;蓄电池输出需要采用一定的驱动电路才能保证LED照明设备可靠稳定地工作;以上所有控制功能均由控制器实现。 2 系统组成 常规的光伏LED照明系统DC/DC变换电路和LED恒流驱动电路为两个相对独立的电路结构,系统存在结构复杂、可靠性差
[电源管理]
基于双向变换技术的光伏<font color='red'>LED照明</font>系统设计
LED扭曲的繁荣
      国内LED龙头企业三安光电在安徽芜湖的全资子公司安徽三安光电公司终于投产了,相信这应该算是三安光电董事长林秀成今年收到的最好的礼物。   昨日,三安光电公告称,安徽三安光电公司芜湖光电产业化一期工程预订了107台MOCVD设备(LED外延片生产设备),并已到位48台。而在几天前,安徽三安光电又收到芜湖市政府给予的8台MOCVD设备进度补贴款6000万元。照此计算,安徽三安光电从芜湖收获的政府补贴累计已达5.85亿元。   国内资本市场似乎也非常认可以三安光电为代表的国内LED产业发展模式,导致LED概念股长时间在高位徘徊。    巨额补贴   1月27日,三安光电年报显示,2010年三安光电营业收入8.63亿
[电源管理]
单片机太阳能草坪灯LED照明设计
   1 引言   太阳能作为一种新兴的绿色能源,以其无可比拟的优势得到迅速的推广应用。一般人认为,节能灯可节能4/5是伟大的创举,但LED比节能灯还要节能1/4,这是固体光源伟大的革新。除此之外,LED还具有光线质量高,基本上无辐射,可靠耐用,维护费用极为低廉等优势,属于典型的绿色照明光源。超高亮LED的研制成功,大大地降低了太阳能灯具使用成本,使之达到或接近工频交流电照明系统初装的成本报价,并且具有保护环境、安装简便、操作安全、经济节能等优点。本文主要介绍它的一些知识,希望能给大家一些启发。   2 LED太阳能草坪灯的定义及结构组成   太阳能草坪灯主要利用太阳能电池的能源来进行工作,当白天太阳光照射在太阳能电
[单片机]
单片机太阳能草坪灯<font color='red'>LED照明</font>设计
又一大厂美国伊顿公司宣布LED照明产品涨价
致经销代理商的公开信中,美国伊顿公司表示:由于金属材料、原材料、货运及零部件成本持续上涨,伊顿照明部门将上涨传统照明产品(legacy technology products)以及高端LED和控制产品(select LED and controls products)的价格。 平均上涨幅度为6%,根据产品类型幅度有所差异。金属材料占比较高的产品上涨幅度可能将高于6%。 伊顿照明方面表示,这一调整将于今年7月16日起开始实施。并表示,由于材料市场以及政府规章的持续变动,伊顿照明保有更改实施时间及涨价幅度的权利。 几天前,美国另一公司Acuity Brands宣布从6月11日开始在美国将所有传统照明产品及多款LED产品
[电源管理]
电动助力转向系统电机驱动电路的设计
一、EPS系统基本结构及工作原理 电动助力转向系统(EPS,Electric Power Steering)是未来转向系统的发展方向。该系统由电动机直接提供转向助力,具有调整简单、装置灵活以及无论在何种工况下都能提供转向助力的特点。EPS最为突出的是该系统可在不更换系统硬件的情况下,通过改变控制器软件的设计,十分方便地调节系统的助力特性,使汽车能在不同车速下获得不同的助力特性,以满足不同工况下驾驶员对路感的要求。 电动助力转向系统(EPS)主要包括传感器、控制器和执行器三大部件。传感器将采集到的信号经过相应处理后输人到控制器,控制器运行内部控制算法,向执行器发出指令,控制执行器的动作,系统结构如图1所示。其工作原理为:在操纵方向
[嵌入式]
高频开关电源控制电路与驱动电路的隔离方法
  变压器最适合于传递高频信号,同时也可以传递驱动功率,因此很适合置于驱动电路与开关管之间。以反激开关调节系统为例,图所示为用驱动变压器Trl使驱动电路与主电路电气隔离的方法,在本例中,控制电路与转换器的输出端共地,PWM控制器产生的开关脉冲信号经过驱动电路功率放大后,再由驱动变压器控制开关管V,保证了电路的隔离。   图 采用变压器隔离的反激转换器系统
[电源管理]
高频开关电源控制电路与<font color='red'>驱动电路</font>的隔离方法
应用于建筑物及室内照明的简单低成本LED驱动电路
LED是一种能效比白炽灯高得多的光源,但它们要求专用电子驱动电路,确保不遭受过大应力,从而使它们继续提供产品规格中所宣称的长寿命。通过设计新的照明方案,LED的紧凑尺寸使其能够置于柔性灯条中,易于隐藏在橱柜或楼梯中。如果在设计参数范围内工作且不遭受过大应力,LED的使用寿命能比白炽灯泡长100倍。 LED的主要工作参数相对简单:保持LED电流恒定,且低于能够承受的最大电流。如果驱动电路以LED的规格维持工作,它们的光输出将恒定,使用寿命将超过5万小时。 建筑物及室内照明灯具的设计针对的是在全球所有地区工作,需要遵从全球规范。灯具需要以50或60 Hz频率在85 VAC至265 VAC的完整通用电压规格范围内工作。传统电源提供精确的
[电源管理]
应用于建筑物及室内照明的简单低成本LED<font color='red'>驱动电路</font>
LED光源有效的“光电”技术参数
我们可以根据实际情况采用多种方案进行有效的分光分色,可以通过专业的大功率 LED 分光分色机进行自动分档,效率高,速度快,可以做到对每一颗LED分光分色一种是从测电压到漏电流到光通量到光谱多道工序大量人工配合进行品质把控和分档。 1.光通量分档: 光通量值是LED用户很关心的一个指标,LED应用客户必须要知道自己所使用的LED光通量在哪个范围,这样才能保证自己产品亮度的均匀性和一致性。 2.反向漏电流测试: 反向漏电流在载入一定的电压下要低于要求的值,生产过程中由于静电、芯片品质等因素引起LED反向漏电流过高,这会给LED应用产品埋下极大的隐患,在使用一段时间后很容易造成LED死灯。 3.正向电压测试
[电源管理]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新安防电子文章

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 视频监控 智能卡 防盗报警 智能管理 处理器 传感器 其他技术 综合资讯 安防论坛

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved