用数字荧光示波器对功率损耗进行高精度分析

发布者:数据迷航者最新更新时间:2006-07-25 来源: 今日电子关键字:示波器  偏移  探头 手机看文章 扫描二维码
随时随地手机看文章

  随着许多行业对开关电源需求的不断增长,测量和分析下一代开关电源的功率损耗就显得至关重要,本文介绍了如何利用TDS500O系列数字荧光示波器,加上TDSPWR2功率测量软件进行功率损耗分析。

  新型的开关电源(SMPS,SwitchModePowerSupply)需要给具有数据传输速度高和GHz级处理器提供较低的电压合很高的电流,这给电源设计人员在电源效率、功率密度、可靠性和成本几方面增加了无形的新压力。为了在设计中考虑到这些需求,设计人员采用了同步整流技术、有源功率因数校正和提高开关频率等新结构。这些技术也随之带来了某些更高的挑战,如:开关器件上较高的功率损耗和过度的EMI/EMC。

  由于开关式电源耗散的功率决定了电源的效率及其热效应,所以测定开关器件和电感器/变压器的功率损耗是一项极为重要的测量工作。设计人员在精确测量和分析各种设备的瞬时功率损耗时,所面临的挑战有下列几个方面:精确测量功率损耗所需的测试装置;校正电压和电流探头传导延迟所造成的误差;计算非周期性开关变化的功率损耗图;分析负载动态变化期间的功率损耗;计算电感器或变压器的磁芯损耗。

  精确测量功率损耗所需的测试装置

  图1所示为开关变换的简化电路。图1中的MOSFET没有与AC馈电线接地或电路输出接地连接,即与地隔离,因此无法用示波器进行简单的接地参考电压测量,因为若把探头的接地导线连接在MOSFET的任何端子上,都会使该点通过示波器与接地短路。


               图1 开关内的电路示意图

  在这种情况下,差分测量是测量MOSFET电压波形的最好方法。差分测量可测定漏极-源极电压(VDS),即MOSFET的漏极端子和源极端子上的电压。VDS可在电压之上浮动,电压范围可为几十伏至几百伏,这取决于电源的电压范围。这里可通过以下几种方法测量VDS:

  *悬浮示波器的机箱地线。建议不要使用,因为这样极不安全,对用户、被测设备和示波器都有危险。

  *使用两个常规的单端无源探头将其接地导线连接在一起,然后用示波器的通道计算功能迸行测量。这种测量法叫做准差分测量,虽然无源探头可与示波器的放大器结合使用,但缺少可适当阻止任何共模电压的共模抑制比(CMRR)功能,这种设置不能准确测量电压,但可使用已有的探头。

  *使用市场上可以买到的探头隔离器隔离示波器机箱接地。探头的接地导线将不再为接地电位,并可将探头与一个测试点直接连接。探头隔离器是一种有效的解决方案,但较为昂贯,其成本是差分探头的2~5倍。

  *在宽带示波器上使用真正的差分探头。可通过差分探头精确地测量VDS,这是最好的方法。

  通过MOSFET进行电流测量时,先将电流探头夹好,然后微调测量系统。许多差分探头都装有内置的直流偏移微调电容器。关闭被测设备待示波器和探头完全预热后,便可设定示波器测量电压和电流波形的平均值。应使用实际测量所用的数值设置敏感度。在没有信号的情况下,调整微调电容器,将每一波形的零位平均值调至0V,这一步骤可最大限度地减少因测量系统内的静态电压和电流而导致的测量误差。

  校正因电压和电流探头传导延迟而造成的误差

  在开关式电源内进行任何功率损耗测量之前,应先同步电压和电流信号,以消除传导延迟,这一点很重要。这一过程被称作“偏移校正”。传统的方法是先计算电压和电流信号之间的时滞,然后再以手动方式通过示波器的偏移校正范围调整时滞,但这是一个非常冗长乏味的过程。

  一种较简单的方法是采用一种偏移校正夹具和一部TDS5000系列示波器。进行偏移校正时,将差分电压探头和电流探头连接到偏移校正夹具的测试点上。偏移校正夹具由示波器的Auxiliary输出或Cal-out信号激励。如果需要,还可用外部信号源激励偏移校正夹具。

  TDSPWR2软件的偏移校正能力,可自动设置示波器并计算传导延迟。偏移校正功能随后便可使用示波器的偏移校正范围,并对时滞进行自动补偿。至此,测试设置现已准备就绪,可开始进行精确测量了。图2和图3所示为偏移校正之前和之后的电流和电压信号。

  
            图2 电压和电流信号的传导延迟


 图3 图2 所示信号在用TDSPWR2功率测量的分析软件“自动偏移校正”后的情形

  计算非周期性开关信号上的功率损耗

  如果发射极或漏极有接地,测量动态的开关参数则较为简单。但需在浮动电压上测量差动电压。若需精确地鉴定并测量差动开关信号,最好使用差分探头。我们可通过霍尔效应电流探头查看穿过开关器件的电流,而无须干扰电路本身。此时便可用TDSPWR2的自动偏移校正功能,去除前面解释的传导延迟。

  TDSPWR2 软件的“开关损耗”功能可自动计算功率波形,并根据捕获的数据测量开关器件的最小、最大和平均功率损耗。在分析开关器件的功率耗散时,这些数据非常有用。这些数据将显示为Turn on Loss(导通损耗)、Turn off Loss(关断损耗)和Power Loss(功率损耗)。在分析开关器件的功率耗散时,这些数据非常有用。如果知道了接通和断开时的功率损耗,便可着手解决电压和电流跃迁,以减少功率损耗。

  在负载变化期间,SMPS的控制回路将变换开关频率以驱动输出负载。注意,当负载转换时,开关器件的功率损耗也随之变化。所产生的功率波形将是非周期性的。分析非周期性功率波形是一件非常冗长乏味的任务,而TDSPWR2的高级测量能力,可自动计算最小功率损耗、最大功率损耗和平均功率损耗,以此提供开关器件的有关信息。

  负载动态变化期间的功率损耗分折

  在实际运行环境中,电源有着持续的动态负载变化。所以测量中很重要的一步,是要捕获整个负载变化事件,并对开关损耗进行鉴定,以确保电源不因这些而过载。

  当今,大部分设计人员都采用具有深度内存(2MB)和高取样速率的示波器,按要求的分辨率捕获事件。但随之而生的挑战,是如何分析各开关损耗点所生成的大量数据,因为它给开关器件造成了很大的应力。

  TDSPWR2的HiPowerFinder功能可避免分析深度内存数据所带来的挑战。只需在范围内选择感兴趣的点,HiPowerFinder便可在深度内存数据内查找该点。找到该点后,可用TDSPWR2在光标位置周围放大,以详细观察其活动。这一功能,加上前面提及的开关损耗测量功能,可使用户迅速有效地分析开关器件的功率耗散情况。

  计算电磁元件的功率损耗

  另一种可减少功率损耗的方法与磁芯有关。从典型的AC/DC和DC/DC线路图来看,电感器和变压器是耗散功率的其他组件,因此不仅会影响功率效率,而且可造成热耗散。

  电感器的测试通常采用LCR,LCR使用一正弦波作为测试信号。在开关式电源中,电感器将被加载上高压、高电流开关信号,但都不是正弦信号。因此电源设计人员需监视实际通电电源内的电感器或变压器的行为特征。故用LCR进行的测试,不能反映实际情况。

  观察磁芯特征的最有效方法是通过B-H曲线,因为B-H曲线能迅速揭示电源内电感器的行为特征。以前,若需查看和分析B-H特征,设计人员须先捕获信号,然后在个人PC上进行进一步的分析。现在,用户可通过TDSPWR2直接在示波器上进行B-H分析,即时观察电感器行为特征。在做深入分析时, TDSPWR2还可在示波器上提供B-H图和捕获数据间的光标链接。

  TDSPWR2的B-H分析能力还可在实际的SMPS环境中自动测量功率损耗。若需推导电感器或变压器的磁芯损耗,可在主磁芯或次磁芯上进行功率损耗测量。这些结果之差即是磁芯的功率损耗(磁芯损耗)。这些测量值可揭示功率耗散区的信息。

  结论

  TDSPWR2分析软件具有开关器件功率损耗、HiPower Finder和B-H分析等关键功能,可快速提供开关式电源的各项测量值。如果与TDS5000系列、TDS7054或TDS7104型数字荧光示波器一起使用,用户不仅能迅速查找功率耗散区域,并能在动态情况下观察其功率耗散行为特征。

关键字:示波器  偏移  探头 引用地址:用数字荧光示波器对功率损耗进行高精度分析

上一篇:基于LPC2132的体质测试仪设计
下一篇:使用“线圈短路测试仪”判断“行变”是否短路

推荐阅读最新更新时间:2024-05-13 18:13

示波器怎么测电流
  示波器测电压的方法有哪些?示波器(虚拟示波器)可以观察到各种不同信号幅度随时间变化的波形曲线,同时还能测量各种不同的电量,比如电压、电流等等。示波器(数字示波器)的显示电路包括示波管及其控制电路两部分,我们上篇讲到其中示波管是一种特殊的电子管,由电子枪、荧光屏和偏转系统3部分组成,是示波器的重要组成部分( 示波器的作用是什么_示波器简单原理_示波器触发方式 )。利用示波器所作的任何测量都可以看做对电压的测量,本篇讲的是怎么用示波器来测电流、电压和电源纹波。希望可以帮助到大家!   示波器怎么测电流   对于直流电流或交流电流的测量,一般是用间接法进行的。具体方法是:   1、首先将电流量变换为一成正比例的电压量。   2、然后
[测试测量]
<font color='red'>示波器</font>怎么测电流
如何使用示波器、AFG和万用表测试LED 驱动器的调光线性度?
干货分享 | 如何使用示波器、AFG和万用表测试LED 驱动器的调光线性度? 随着LED灯珠技术的发展,相较于传统的模拟调光技术,数字调光技术在近几年得到了长足的发展。现如今在灯具市场里有成千上万种调光产品可供选择,在调光驱动选择上我们需要考虑到这些要素。调光平滑度,调光深度,在调光过程中是否有可感知的频闪和纹波。 为了达到调光输出的超细平滑度,首先得了解每个调光等级之间的差别。在每个调光等级间,如果差别越小,则调光越平滑。这样就能在整个调光过程中实现无极调光。如下图所示。 本文案例是一个客户需要快速测量PWM调光时的输出电流线性度和平滑度,进而再进积分球测试亮度线性度。被测器件是一款集成度极高,具备恒压或恒流输
[测试测量]
如何使用<font color='red'>示波器</font>、AFG和万用表测试LED 驱动器的调光线性度?
利用R&S示波器RTO/RTE测量Qi无线充电系统
1 简介 随着电子设备的移动应用越来越重要,更持久与方便的充电技术也备受厂家关注。许多公司企业已结成联盟,进军无线充电的领域,发展相关的技术及制订技术标准。目前无线充电标准有三大阵营,包括 Wireless Power Consortium (WPC), Power Matter Alliance (PMA) 及 Alliance for Wireless Power (A4WP),各有不同厂商在后支持,互相竞逐一席之地。其中,目前比较广泛使用的是无线充电联盟 WPC的 Qi ( 气 ) 标准。Qi 暂时主要以低功率型5 瓦以下的设备为主,包括智能手机、无线遥控器等等。将来规格将提升到支持中等功率型125瓦。该文章将把重点集中在Qi
[测试测量]
利用R&S<font color='red'>示波器</font>RTO/RTE测量Qi无线充电系统
STM32中断向量表偏移量0x200详解
ST公司重定位向量表的库函数: void NVIC_SetVectorTable(uint32_t NVIC_VectTab, uint32_t Offset) { assert_param(IS_NVIC_VECTTAB(NVIC_VectTab)); assert_param(IS_NVIC_OFFSET(Offset)); SCB- VTOR = NVIC_VectTab | (Offset & (uint32_t)0x1FFFFF80); } 其中NVIC_VectTab要么是FLASH要么是RAM的起始位置,Offset: Vector Table base offset field. This v
[单片机]
电流探头在实际应用当中需要注意的参数
电流探头,可以用来测量流过导线的电流,是根据法拉第原理设计的测量导线中干扰电流信号的磁环。实质上,它是一个匝数为1的变压器。电流探头分为交流/直流电流探头和交流电流探头。电流探头前者可以测量直流和交流电流,而后者只能测量交流电流。 电流探头的工作原理表明,当共模电流远小于差模电流时,用正负双线测量共模电流有一定的误差,在测量大电流旁边的小电流导体时也有一定的误差,因此有必要改进电流探头的设计,提高测量精度,以发挥并联测量的作用。 电流探针提供了一种安全、经济、简单、准确的电流测量方法。电流探针的电流可以用电路的恒定开度来测量。电流钳的夹子可以围绕导体形成磁场环,然后再测量电流。 那么在实际应用中,还需要注意电流探头的的
[测试测量]
电流<font color='red'>探头</font>在实际应用当中需要注意的参数
示波器常用的探头有哪些(电压、电流、逻辑、差分详解)
  示波器探头种类比较多,那么常用示波器探头种类有哪些?示波器探头的种类大体上可以分为电压、电流、逻辑等几大类,如下图所示:      1 无源电压探头   1.1 无源探头   无源探头由导线和连接器制成,在需要补偿或衰减时,还包括电阻器和电容器。探头中没有有源器件(晶体管或放大器),因此不需为探头供电。无源探头一般是最坚固、最经济的探头,它们不仅使用简便,而且使用广泛。   1.2 高阻无源电压探头   从实际需要出发,使用最多的是电压探头,其中高阻无源电压探头占最大部分。无源电压探头为不同电压范围提供了各种衰减系数1 ,10 和100 。在这些无源探头中,10 无源电压探头是最常用的探头。对信号幅度是1V峰峰值或更低的
[测试测量]
<font color='red'>示波器</font>常用的<font color='red'>探头</font>有哪些(电压、电流、逻辑、差分详解)
示波器上使用DSP滤波技术的探讨
  简介   当前所有高速实时数字示波器都采用了各种形式的数字信号处理技术(DSP)。某些工程师担心使用软件对采集来的数据波形滤波可能会与实际的信号有出入。但是,示波器捕获的原始波形未必表示的是实际输入信号,示波器捕获的“原始”波形数据中包括了失真的结果,这是由示波器的前端硬件滤波器造成的。在理想情况下,实时示波器拥有无限快的采样速率、完美的平坦频响、线性相位响应、没有底噪声及带宽高。但在实际环境中,示波器具有硬件限制,这种限制产生了误差。DSP滤波技术最终可以在一定程度上校正硬件导致的误差,改善测量精度,增强显示质量。   当前性能较高的实时示波器中常用的DSP滤波技术有以下五种:   每种滤波器特点都可以在用有限脉
[嵌入式]
示波器探头(1)
示波器因为有探头的存在而扩展了示波器的应用范围,使得示波器可以在线测试和分析被测电子电路,如下图: 探头的选择和使用需要考虑如下两个方面: 其一:因为探头有负载效应,探头会直接影响被测信号和被测电路; 其二:探头是整个示波器测量系统的一部分,会直接影响仪器的信号保真度和测试结果 一、探头的负载效应 当探头探测到被测电路后,探头成为了被测电路的一部分。探头的负载效应包括下面3部分: 1. 阻性负载效应; 2. 容性负载效应; 3. 感性负载效应。 阻性负载相当于在被测电路上并联了一个电阻,对被测信号有分压的作用,影响被测信号的幅度和直流偏置。有时,加上探头时,有故障的电路可能变得正常了。一般推荐探头的电阻R 1
[测试测量]
<font color='red'>示波器</font><font color='red'>探头</font>(1)
小广播
最新应用文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved