基于8051单片机的频率测量技术

发布者:xinyi9008最新更新时间:2007-10-08 来源: 电子元器件应用关键字:拍频  线性  叠加  分频 手机看文章 扫描二维码
随时随地手机看文章

0 引言

随着无线电技术的发展与普及,"频率"已经成为广大群众所熟悉的物理量。而单片机的出现,更是对包括测频在内的各种测量技术带来了许多重大的飞跃,然而,小体积、价廉、功能强等优势也在电子领域占有非常重要的地位。为此.本文给出了一种以单片机为核心的频率测量系统的设计方法。

1 测频系统的硬件结构

测量频率的方法一般分为无源测频法、有源测频法及电子计数法三种。无源测频法(又可分为谐振法和电桥法),常用于频率粗测,精度在1%左右。有源比较法可分为拍频法和差频法,前者是利用两个信号线性叠加以产生拍频现象,再通过检测零拍现象进行测频,常用于低频测量,误差在零点几Hz;后者则利用两个非线性信号叠加来产生差频现象,然后通过检测零差现象进行测频,常用于高频测量,误差在±20 Hz左右。以上方法在测量范围和精度上都有一定的不足,而电子计数法主要通过单片机进行控制。由于单片机的较强控制与运算功能,电子计数法的测量频率范围宽,精度高,易于实现。本设计就是采用单片机电子计数法来测量频率,其系统硬件原理框图如图1所示。

为了提高测量的精度,拓展单片机的测频范围,本设计采取了对信号进行分频的方法。设计中采用两片同步十进制加法计数器74LS160来组成一个100分频器。该100分频器由两个同步十进制加法计数器74LS160和一个与非门74LS00共同设计而成。由于一个74LS160可以分频十的一次方,而当第一片74LS160工作时,如果有进位,输出端TC便有进位信号送进第二片的CEP端,同时CET也为高电平,这样两个工作状态控制端CET、CEP将同时为高电平,此时第二片74LS160将开始工作。

2 频率测量模块的电路设计

用单片机电子计数法测量频率有测频率法和测周期法两种方法。测量频率主要是在单位定时时间里对被测信号脉冲进行计数;测量周期则是在被测信号一个周期时间里对某一基准时钟脉冲进行计数。

2.1 8051测频法的误差分析

电子计数器测频法主要是将被测频率信号加到计数器的计数输入端,然后让计数器在标准时间Ts1内进行计数,所得的计数值N1。与被测信号的频率fx1的关系如下:



而电子计数器测周法则是将标准频率信号fs2送到计数器的计数输入端,而让被测频率信号fx2控制计数器的计数时间,所得的计数值N2与fx2的关系如下:



事实上,无论用哪种方法进行频率测量,其主要误差源都是由于计数器只能进行整数计数而引起的±1误差:



可见,在同样的Ts下,测频法fx1的低频端,误差远大于高频端,而测周法在fx2的高频端,其误差远大于低频端。理论研究表明,如进行n次重复测量然后取平均,则±1误差会减小n倍。如给定±1误差ε0,则要求ε≤ε0ο对测频法要fx1≥ 对测周法则要求fx2≤ε0fs2ο因此,对一给定频率信号fs进行测量时,用测频法fs1越低越好,用测周法则fs2越高越好。

2.2 8051单片机的测频范围和测频时间

8051单片机的定时器/计数器接口,在特定晶振频率fc=12 MHz时,可输人信号的频率上限是fx≤fc/24=500 kHz。如用测频法,则频率的上限取决于8051,故测频法的测量范围是:

即:fx1≤500 kHz。
用测频法测频时,定时器/计数器的计数时间间隔可由8051的另外一个定时器/计数器完成,外接100分频器的情况下,fx1的频率范围可扩展到50MHz
用测周法设计时,其频率的下限取决8051计数器的极限。考虑到8051内部为16位,加上TF标志位,计数范围为217,因此其最大计数时间为秒。而如果采用半周期测量,则测频范围是:



在测周法中,标准频率信号fs2由8051的内部定时结构产生,f s2恒为fc/12,因此,在给定ε0为0.0 1时,fx2既有一定的上限频率,也有一定的下限频率。即:



并由此可见得出:4Hz≤fx1≤10 kHz理论上可以达到无穷大,即fs1可以达到无穷低,因此,fx1可达到无穷小,因此,可以认为测频法的测频范围只有上限频率,没有下限频率。而再 这样,两个频率范围相叠加即可得到该频率计的测频范围:4 Hz≤fx1≤50 MHz。精度可以达到1Hz。从以上分析可以看出,测频法测量的频率覆盖范围较宽,且在高频端的测量精度较高,而在低频段的测量精度较低,同时测量时间较长。测周法测量的频率覆盖范围较窄,在高频段的测量精度较低,在低频段的测量精度较高,测量时间短。因此,测频法适于高频信号的测量,测周法适于较低频信号测量。

8051可用软件来控制定时器/计数器的工作方式,以实现测频法与测周法的动态切换。对宽频带、高速度的频率测量,可采用软件切换测量方法来提高测量精度与测量速度。其测频电路如图2所示。

3 软件设计

由图2所示的测频电路可知,波形经过施密特触发器74LS132后,再经整形放大后即可变成方波,然后利用8051的定时器/计数器T0给定定时时间为10 ms,再利用8051的定时器/计数器T1作计数器,累计10 ms时间里所经过施密特触发器74LS132的方波信号。当T0定时满10 ms时,T0向CPU发出中断信号以申请中断,并进行频率测量。假设所设定的中介频率为l00/10 ms=l00×100=10000 Hz=10 kHz,冈为fx=N/T,所以,可以将假定给定数值100与Tl进行比较,再将Tl计数器里所计的数值与给定的数值进行比较。由于在用测频法测量频率时,较小频率的误差较大(±l误差)。所以,这里用l0 kHz作为中间频率,其±1误差为9.9 kHz和1 0.1 kHz,误差率为1%,可见该误差不是很大,还可以接受。

事实上,当频率比较小于1 0kHz时,若程序选择用测量周期法。则测周法流程图及其程序如如图3所示。

4 结束语

通过本文所介绍的设计过程即可实现频率测量要求,并能够很好的完成测量结果的存储,完全能够达到预期的效果。

关键字:拍频  线性  叠加  分频 引用地址:基于8051单片机的频率测量技术

上一篇:基于调节振荡频率的脉冲占空比测量
下一篇:基于SCP1000-D01的气压计的设计

推荐阅读最新更新时间:2024-05-13 18:38

LDO线性调节器电路在StrataFlash嵌入式存储器中的应用
  德州仪器(TI)推出的TPS79918低压差(LDO)线性调节器为新的Intel StrataFlash嵌入式存储器(P30) 提供了所需性能。英特尔公司正从它的第三代180nm StrataFlash嵌入式存储器(J30)转向它的第四代130nm StrataFlash嵌入式存储器(P30)。这个从J3 到 P30存储器的转变可以使系统在运行中消耗更小的总电流,因为P30 VCC电压需求降低到了1.8伏。英特尔也推荐用一个LDO线性调节器来提供1.8伏的电压基准。   TPS79918的特性   TPS79918 LDO在一个小的封装内提供了外部电气特性。它具有高(大于66dB)电源电压抑制比(PSRR)、低噪声、快
[电源管理]
LDO<font color='red'>线性</font>调节器电路在StrataFlash嵌入式存储器中的应用
低压线性稳压器(LDO)的应用技巧
热力学中常犯的一个错误就是选择和线性稳压器一样简易的装置。当设计即将应用时,设计师通常会意识到这个错误。更糟的是,由于新型线性稳压器的新功能和规格,封装中消散的功率很容易被忽视。 这让稳压器的运行温度会超过其额定温度,在实际使用中会引发故障。 线性稳压器基本上由一个旁路元件和一个控制器组成。该元件是一个晶体管,可以在控制回路的帮助下成为可变电阻器,从而在旁路元件和负荷之间形成一个分压器。 图1. 线性稳压器框图。注意,旁路元件将在其自身和负荷之间形成一个分压器,起到耗散功率的作用。 人们常常忽略了它并非一个神奇实体的事实: 旁路元件上的电压会降低,并逐渐升温。例如,如果图1中的电路有100毫安的恒定负荷,则可以将其
[电源管理]
低压<font color='red'>线性</font>稳压器(LDO)的应用技巧
第四代SIMPLE SWITCHER开关稳压器产品介绍
美国国家半导体推出了除”简单易用”外,还能提供多种输出电流的第四代SIMPLE SWITCHER 产品组。本产品组具有良好的功能及设计自由度,支持设计工程师们使用它们设计出所需要的尺寸、EMI及输入精确度的最佳电源装置,同时,通过WEBENCH 可以缩短产品上市时间。 背景 驱动电路需要电源IC。为了选择电源IC,电源设计工程师们一般选择输入电压、输出电压和输出电流后根据热效率来考虑选择线性稳压器还是选择开关稳压器。 如果电路比较简单,而且对于效率没有要求时,可以选择线性稳压器,而对于效率高并且需要具有高密度电源的空间时应选择开关稳压器。但是,由于线性稳压器在低压情况下存在过度发热及效率低等问题,因此开始逐渐向开关稳压器转
[电源管理]
振动筒式压力传感器的FLANN非线性校正
0 引言 传感器的非线性校正有多种方法,并且也都得到了不同程度的应用。传统的非线性传感器线性化的方法是硬件补偿,这种方法难以做到全程补偿,而且补偿硬件的漂移会影响整个系统的精度,因此可靠性不高、测量范围有限、精度低。现在国内外研究人员研究了多种多项式拟合校正法,当用直线拟合时,拟合精度较低,通常不能满足要求;用高次曲线拟合又过于复杂,实现困难。近年来发展较多的是神经网络法,大都采用的是BP算法[1][2]。在理论上,含有隐含层的BP网络能够逼近任意的非线性函数,这种方法适应性强,精度也高。但是BP网络结构复杂、调节的权值多、学习速度慢、容易陷入局部最小。为此本文采用了一种基于函数链神经网络(FLANN)的传感器线性校正方法,
[工业控制]
低电流LED应用的线性恒流稳压方案
      凭借着节能、长使用寿命及色彩组合丰富等优势,LED成为增速最快的半导体领域之一,近年来的年复合增长率(CAGR)高达20%,预计2012年全球LED市场总值更将达114亿美元,前景非常可观。       市场上典型的LED驱动器包括两类,即线性驱动器和开关驱动器;进一步细分,则有三种,分别是开关稳压器、线性稳压器和电阻型驱动器。这三种驱动器分别适合不同等级的电流应用,见图1。如电流大于500 mA的大电流应用采用开关稳压器,因为线性驱动器限于自身结构原因,无法提供这样大的电流;而在电流低于200 mA的低电流应用中,通常采用线性稳压器及电阻型驱动器;而在200至500 mA的中等电流应用中,既可以采用线性稳压器,
[电源管理]
低电流LED应用的<font color='red'>线性</font>恒流稳压方案
一个线性稳压器阶跃响应的测试数据示例
线性稳压器的稳定性优化简易方法 在上一篇文章,我们介绍了线性稳压器阶跃响应的测试方法和具体的线性稳压器阶跃响应电路。本文将介绍一个线性稳压器阶跃响应的测试数据示例。 阶跃响应波形示例 下面的波形图是使电路图中的RESR从0Ω~1Ω变化时的阶跃响应(负载瞬态响应)示例。 ①是RESR为0Ω,即未添加的状态。当负载电流上升时,输出振荡。这是使用MLCC作为输出电容器时发生振荡现象的一个示例。从相位的角度来看,几乎没有裕度。 ②是RESRを0.1Ω时的波形。发生振铃并逐渐收敛,但是到稳定所花的时间很长,并且振铃可能会作为噪声产生不利影响。 ③是RESR为0.2Ω时的波形。振铃大大减少。请注意,从③开始的时间轴为20µs/div。
[测试测量]
一个<font color='red'>线性</font>稳压器阶跃响应的测试数据示例
分频系数可变的分频
分频系数可变的分频器
[模拟电子]
<font color='red'>分频</font>系数可变的<font color='red'>分频</font>器
线性稳压器LT3071特性/应用/数据资料下载
      描述   LT ® 3071 是一款低电压、UltraFaST TM 瞬态响应线性稳压器。该器件可提供高达 5A 的输出电流和一个 85mV 的典型压差电压。一个 0.01μF 的基准旁路电容器将输出电压噪声降低至 25μVRMS。LT3071 的高带宽允许使用低 ESR 陶瓷电容器,从而免除了大容量电容并节省成本。LT3071 所具备的诸多特点使其非常适合于高性能 FPGA、微处理器或敏感的通信电源应用。   可以采用数字方式来选择输出电压 (可选范围为 0.8V 至 1.8V,50mV 增量)。一种模拟裕度调节功能允许用户在 ±10% 的连续范围内调节系统输出电压。该 IC 内置了一种独特的跟踪功能,用于控
[电源管理]
<font color='red'>线性</font>稳压器LT3071特性/应用/数据资料下载
小广播
最新应用文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved