带有数据显示功能的锂电池和镍镉电池充电系统

发布者:baiyuguoji最新更新时间:2007-09-25 来源: 电子设计应用关键字:通信  电流  容量  拓扑 手机看文章 扫描二维码
随时随地手机看文章

引言

鉴于市场上镍镉电池和锂电池共存的局面,本文设计的充电器可以对这两种电池进行充电,对镍镉电池组采用脉冲充电方式,对锂电池组采用恒流充电方式,这是依据电池的不同机理而设计的,真正做到了一机两用,此为该充电器的创新点,也是设计的难点。充电器的宽屏LCD可以同时显示4组充电器的充电状态,也可单独显示一组充电器上电池的各项参数,做到了对电池充电过程的实时监测。

系统整体设计

系统设计目标是:

1.可同时对4组8.4V的锂离子电池或9.2V的镍镉电池进行充放电。

2.可与电池组中的芯片通信,判断电池的化学性质。

3.对于不同化学性质的电池,将采用相应的充电方式。

4.可与电池组中的芯片通信,得到该电池组的电压、充电电流、容量等参数。

5.充电器带有LCD,可显示电池的各项数据。

该充电器的功能框图如图1所示。

系统硬件设计

总控单元的设计与实现

总控单元是由微控制器PIC16F873和键盘控制芯片ZLG7289A构成的。主要任务是负责与各个充电单元通信,并处理用户输入与LCD显示信息。键盘控制芯片在这里负责6个按键和12个LED的控制。ZLG7289A与微控制器之间通过SPI总线进行双向通信。主控单元每秒查询一次各个充电单元,获取当前充电单元的信息,如有无电池、电池性质、电池电压等。之后由LCD模块向用户显示。

充电单元的设计与实现

LTC4002锂离子电池充电控制芯片

LTC4002是一款高效独立开关模式锂离子电池充电控制器。该控制器有4.2V和8.4V两个版本。LTC4002-8.4具有500kHz开关频率,是高效电流模式的PWM控制器。通过驱动一个外部P沟道MOSFET,它可以提供4A的充电电流,而效率可高达90%。输出电压设置为8.4V,最终浮动电压并具1%的精度,而充电准确度为5%。此外,该器件可在9V~22V范围内的多种墙上适配器上运行。与迟滞拓扑结构充电器相比,LTC4002-8.4的快速运行频率与电流模式架构使之能够使用小型电感器和电容器。

锂离子/镍镉电池两用充电单元的总体设计

从前面对LTC4002的分析可知,该芯片是针对锂离子电池的充电控制器,要实现对镍镉电池充电需要解决以下问题:首先,LTC4002对电池电压进行监测,保证电池电压不超过8.4V。但对于镍镉电池组,充电截止电压可以达到9.2V。其次,镍镉电池充电即将结束时,需要对电池进行以正常电流30%和10%的涓流充电。所以,第二个需要解决的问题是如何控制恒流充电的电流大小。此外,对镍镉电池充电应使用脉冲充电方式。即以1s为周期,95%的时间用来充电,1%的时间用来放电,其余时间不充电也不放电。最后,如何判断某一个电池是锂离子电池还是镍镉电池,因为若把锂离子电池误判为镍镉电池,会使充电电压高于8.4V,这对锂离子电池是十分危险的,而将镍镉电池误判为锂离子电池,则可能造成电池充电不足。因此,必须保证极低的误判率。

本部分根据LTC4002的工作原理,设计了既可以对锂离子电池进行恒流-恒压充电,又可以对镍镉电池进行脉冲式充电的电路。充电单元的总体功能框图如图2所示。其中,信号调理电路使充电器既可以对8.4V的锂电池充电,又可以对9.2V的镍镉电池充电,同时也起到控制充电电流大小的作用。

利用微控制器控制LTC4002的工作状态,配合放电电路使充电器可以对镍镉电池进行脉冲方式充电。

微控制器通过一定的通信协议(HDQ16)与智能电池通信,确定其容量、化学性质等关键参数。

信号调理电路的设计

为了使LTC4002可对高于8.4V的电池进行恒流充电,并可调节充电电流,在LTC4002的BAT和SENSE端与采样电阻之间加入一级信号调理电路。该电路的主要功能是对采样电阻两端的信号进行运算,针对不同化学性质的电池,将相应的信号送给LTC4002。该信号调理电路如图3所示。

这里定义采样电阻两端的电压值是VBAT和Vsense,那么充电电流在采样电阻上的压降VRS为:VRS=Vsense-VBAT,该信号为减法器的输出。设乘法器的乘系数为K,那么乘法器的输出为KVRS。对于锂子电池,二选一开关将选通电池电压VBAT;对于镍镉电池,二选一开关将选通7V恒定电压。这里设二选一模拟开关的输出为V1,那么加法器的输出Vs应为:Vs=KVRS+V1,这样一来,送到LTC4002的BAT和SENSE两端的电压之差应为KVRS。只要正确控制K值,就可以使充电电流为正常充电电流的1/K。因此,可以通过二选一开关控制电流为恒流充电时的10%或30%。

对于LTC4002的BAT端输入值,当开关选通锂离子电池时,BAT的输入即是电池电压。此时,LTC4002可以控制整个锂离子的充电过程。不需任何外界的干预。

当开关选通了7V恒定电压后,BAT端的输入恒定为7V,此时,LTC4002无法知道电池的真实电压,只认为电池电压为7V。所以,尽管电池电压高于8.4V,仍会以恒定电流对电池进行充电。在这种情况下,需要微控制器的干预,否则,会造成电池的过充。由于微控制器内部带有ADC,可以监测电池电压的变化。当电池电压达到指定值时,减小充电电流,直至电池充满。这样就可以对9.2V的镍镉电池进行充电了。

脉冲充放电电路的设计

由于LTC4002是恒流充电控制芯片,因此,必须使用微控制器控制其充电使能引脚COMP。当需要LTC4002输出充电脉冲时,使控制COMP引脚的端口变为高阻态,使COMP引脚自行升至360mV以上时,便有充电电流输出。放电时,必须将COMP引脚拉低,使LTC4002关断充电电流。之后,再打开放电电路。微控制器选用PIC16F873,它是一款基于Flash的8位微控制器。内部有定时器、看门狗电路、10位ADC等模块。

微控制器以1s为周期对镍镉电池进行脉冲充放电。

系统软件设计

系统软件总体设计

充电单元中的微控制器主要负责充电过程的控制和与总控板的通信,程序流程如图4所示。充电单元首先判断是否有电池,如果有电池放入,则判断充放电状态,默认是充电状态,该状态可由总控单元改变。若充电单元处于充电状态,则继续判断电池的化学性质,针对不同的电池采用不同的充电方式。若处于放电状态,则对电池组进行放电,直到电池电压低于阈值电压后,转为充电状态。

除主程序外,总控单元与充电单元的通信是在中断服务程序中实现的。当充电单元收到总控单元的指令后,进入中断。若指令是查询数据指令,则向总控单元发送需要的数据。若是充电状态设置指令,则依据指令设置充电单元的充电状态。

通信协议的实现

通过与电池组中电能计量芯片通信的方法来判断电池的性质。本系统可以与遵循HDQ16接口协议的智能电池组进行通信,除了电池组的化学性质外,还可以将电池组的容量、电压、充电电流、编号等数据一并读取,供充电器显示之用。

充电单元可以通过HDQ总线对智能电池进行读操作。HDQ16接口协议是基于指令的协议。一个处理器发送8位指令码给智能电池,这个8位的指令码由两部分组成,7位HDQ16指令码(位0~6)和1位读/写指令。读/写指令指示智能 电池存储接下来的16位数据到一个指定的寄存器,或者从指定的寄存器输出16位数据。在HDQ16里,数据字节(指令)或者字(数据)的最不重要的位会优先传输。

一个块的传输包括三个不同的部分。第一部分经由主机或者智能电池把HDQ16引脚置逻辑低状态一个tSTRH:B时间后开始发送。接下来的部分是真正的数据传输,数据位在tDSU:B时间间隔里是有效的,负边界用来开始通信。数据位被保持一个tDH:DV时间间隔,以便允许主机或智能电池采样数据位。

在负边界开始通信后,最后一部分通过返回给HDQ16引脚一个逻辑高状态,至少保持tSSU:B时间间隔来停止传输。最后一个逻辑高状态必须保持一个tCYCH:B时间间隔,以便有时间让块传输完全停止。

如果发生通信错误(e.g.,tCYCB>250μs),主机就发送给智能电池一个BREAK信号,让其控制串行接口。当HDQ16引脚在一个时间间隔,或者更长时间里为逻辑低状态时,智能电池就会侦测BREAK。然后,HDQ16引脚回到其正常预设高逻辑状态一个tBR时间间隔。然后,智能电池就准备从主机那里接收指令。

HDQ16引脚是开漏的,需要一个外部的上拉电阻。

图5是用逻辑分析仪显示的一次HDQ总线上的通信波形。

结语

本文提出的充电系统从技术上很好地解决了上述问题,通过LCD显示屏可以清晰便捷地读出电源的剩余容量、已有充放电次数、充电及放电电流、电池电压、容量统计和电池特性等重要内容,并且通过设定,可以判断电源是否达到报废标准,及时提醒操作者更新电源。为电源维护保养工作提供明确的参考数据,降低了对操作人员专业技术水平的要求,保证了列车尾部电源的安全使用。

关键字:通信  电流  容量  拓扑 引用地址:带有数据显示功能的锂电池和镍镉电池充电系统

上一篇:功率放大器两种实现方法的比较
下一篇:数字电源的特点与发展现状

推荐阅读最新更新时间:2024-05-13 18:38

电流源DAC配合PIN二极管 提供RF衰减及温度补偿
PIN二极管通常作为TV调谐器中的RF信号以及固定通信设备中宽带RF的可变衰减器。这类二极管可以作为分立器件安装在电路板上,或集成到混合GaAs模块。在高频段,PIN二极管的正向电阻随着流过结电流增加而减小(图1)。 图1. 典型PIN二极管电阻与正向电流的关系   PIN二极管衰减器可采用串联或并联配置结构。串联衰减器(图2a)通常需要二极管的电流为10mA至20mA。其衰减量为: 20log(1 + RPIN / 2Z0)(单位dB)   对于并联衰减器(图2b),要求的偏置电流通常为2mA至3mA。并联衰减器的衰减量为: 20log(1 + Z0 / 2RPIN)(单位dB)     图2
[电源管理]
<font color='red'>电流</font>源DAC配合PIN二极管 提供RF衰减及温度补偿
裸机系列——2440串口通信2程序代码
关于一些串口通信的知识已经在上一篇文章中做了总结,这里主要讲程序的问题。 首先是直接通信,即不使用 FIFO 和中断的通信 代码 #define GLOBAL_CLK 1 #include stdlib.h #include string.h #include def.h #include option.h #include 2440addr.h #include 2440lib.h #include 2440slib.h #include mmu.h #include profile.h #include memtest.h #define baud 115200 void led_port_init() {
[单片机]
BQ24195的使用:与MSP430G2553的I2C通信
前言 本文作为bq24195的I2C使用教程,主要涉及I2C通信代码的实现以及一些注意事项,硬件部分稍有涉及但不是主要内容。 正文 硬件连接图: I2C的上拉电阻10K或4.7K都行,阻值影响的是跳变沿的时间,即使fast mode I2C通信的频率也才400k左右,所以影响不大。 软件例程 我们用的是G2553的硬件I2C,有中断法和查询法,不想用中断的可以用查询法。如果选择了低功耗,建议用中断法。 MSP430G2553硬件I2C驱动-中断法 IT已经给我们准备好了,直接照搬msp430g2xx3_usci_i2c_standard_master.c例程就行。稍微整理一下做成i2c.h和i2c.c文件,力求简
[单片机]
BQ24195的使用:与MSP430G2553的I2C<font color='red'>通信</font>
放大器漏电流分析
您是否曾经有过在为您的电路选择最佳运算放大器上花费了大量时间但最后却发现厂商基准输入的失调电压不对的经历?要是在您的应用电路中,您发现其 10 倍于规范怎么办呢?您是将芯片拿去做故障分析,还是将芯片丢弃并再次查看您的放大器列表呢?作为一种解决方案,我建议您通过重新检查您放大器的规范来对补偿误差做出解释。 在跨阻抗放大器、模拟滤波器、采样保持电路、积分器、电容传感器或者任何其他您放大器周围有高阻抗组件的电路中,如果您将放大器作为关键组件来使用,那么您可能会发现放大器的输入偏置电流在您电路的电阻中形成了一个失调电压误差。 在双极放大器年代,术语“输入偏置电流”是一个准确的描述,而现在也是如此。双极放大器的输入偏置电流在放大器的输
[电源管理]
放大器漏<font color='red'>电流</font>分析
通信芯片供应商创耀科技今日科创板上市,股价涨近28%
1月12日,创耀科技在上海证券交易所科创板上市,公司证券代码为688259,发行价格66.6元/股,发行市盈率为83.65倍。上市首日股价大近28%,截至发稿,报85.01元/股,总市值68.01亿。 资料显示,创耀科技成立于2006年,自成立以来便专注于通信核心芯片的研发,并在物理层通信算法及软件、模拟电路设计、数模混合大规模SoC芯片设计和版图设计等平台性技术方面形成了深厚积累。由于通信技术存在着共通性,因此结合市场需求,创耀科技可以灵活地将已具备的平台性技术应用在多个应用领域。 目前,创耀科技已成功进入电力线载波通信领域、接入网网络通信(包括有线接入和无线WiFi)领域。按照应用领域来划分,创耀科技通信芯片与解决方案业务
[手机便携]
<font color='red'>通信</font>芯片供应商创耀科技今日科创板上市,股价涨近28%
数字万用表测量电流方法
电流测量与用数字多用表测量其它量不同。直接电流测量法就是将数字多用表直接串到被测电路上,让被测电路电流直接流过多用表内部电路。间接测量法不需要将电路打开并将多用表串到被测电路上。间接法要用到电流钳。 首先要有测电流的档位。然后将表笔插入左侧测电流的插孔内,然后将万用表串入要测试的线路中就可以了。如果不知道有多大电流,最好将档位调高,如不适合再降低一档,以免烧表。 ①将红表笔插入 μ、ma、℃ 或loa插孔,黑表笔插入 com 插孔。 ②将功能量程开关置于μa ̄=、ma ̄或a电流测量档。默认设置为直流电流测量,如要进行交流测量,按se-lect蓝色键可选择交流电流测量。 ③测量电流时,表笔应串联在被测电路中,且红表笔应靠近正
[测试测量]
数字万用表测量<font color='red'>电流</font>方法
IrDA红外通信在导航仪中的应用
    摘要: IrDA红外通信是一种低价的、适应性广的短距离无线通信技术。介绍IrDA的有关协议及实现方式,并给出了IrDA红外通信在导航仪中的应用设计实例。     关键词: 红外数据协会(IrDA)  红外通信  高速红外  4PPM调制  高速串行/并行接口     导航仪是车载或手持的路径引导装置。要准确、快速、成功地实现路径引导,必须有大量的、并能不断更新的地理信息数据支持,这就要求它具有与其他设备通信并交换数据的功能。作为嵌入式设备的一员,可以选用的通信方案有:PCI总线,IrDA,USB,Ethernet,PC卡及一些传统的I/O。其中可以实现无线通信的只有IrDA。IrDA1
[应用]
高频下保持高输出阻抗的双极电流
基于仪器和运算放大器的传统电流源和电压/电流转换器在低频下提供很高的输出阻抗,这是因为放大器具有良好的低频 CMRR(共模抑制比)。在较高频率下,降低的 CMRR、固有的输出电容、转换率的局限性阻止了高质量电流源的实现。Analog Devices 公司的两款 200 MHz线路接收/放大 IC——AD8129 和 AD8130——提供了差分输入和显著的 CMRR,使它们成为构建高频恒流源的有力候选者。图 1 中的电路提供了良好的起点,但 AD8130 较高的输入偏置电流可能会在电流电平较低时影响输出电流精度。   为了克服这个问题,可以添加一个单位增益缓冲器IC 2 来隔离电流传感电阻器(图 2)。另外,可以利用缓冲放大器来
[应用]
小广播
热门活动
换一批
更多
最新应用文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved