基于MAX7044/7033的无线收发电路

发布者:雅致小筑最新更新时间:2006-05-30 来源: 单片机及嵌入式系统应用关键字:电感  放大器  阻抗 手机看文章 扫描二维码
随时随地手机看文章

  MAX7044是基于晶振PLL 的VHF/UHF发射器芯片,在300 MHz~450 MHz频率范围内发射OOK/ASK数据,数据速率达到100 kbps,输出功率+13 dBm(50Ω负载),电源电压+2.1~+3.6 V,电流消耗在2.7 V时仅7.7 mA。工作温度范围一40℃~+125℃,采用3 mm×3 mm SOT23 - 8封装。
  MAX7033是一个完全集成的低功耗CMOS超外差接收器芯片,接收频率范围在300 MHz~450 MHz的ASK信号。接收器射频输入信号范围从一114 dBm-0dBm。MAX7033芯片内部包含有LNA、差分镜像抑制混频器、PLL、VCO、10.7 MHz IF限幅放大器、AGC、RSSI、模拟基带数据信号恢复等电路。工作电压+3.3 V或+5.0V,250μs启动时间,低功耗模式电流消耗<3.5μA,工作温度-40℃~+105℃,采用TSSOP-28和薄形QFN-EP* *-32封装。
  MAXT044发射器芯片与接收器芯片MAX7033配套,适合汽车遥控、无键进入系统、安防系统、车库门控制、家庭自动化、无线传感器等应用。

1 基于MAX7044的发射器电路
  MAX7044引脚功能如表1所列。


  MAX7044芯片内部包含功率放大器(PA)、晶体振荡器(crystal oscillator)、驱动器(driver)、数据有效检测电路(data activity detector)、锁定检测电路(10ck detect)、锁相环(32x PLL)、分频器(/16)等电路。
(1)低功耗模式
  MAX7044有一个自动的低功耗模式(shutdown mode)控制方式。如果DATA引脚在一个确定的时间(等待时间)内没有动作,器件自动进入低功耗模式。等待时间大约是216个时钟周期,在315 MHz频率大约为6.66ms,在433 MHz频率大约为4.84 ms。进入低功耗模式的等待时间为

式中,fRF是射频发射频率。
  当器件在低功耗模式时,在DATA信号的上升沿“热”启动晶振和PLL,晶振和PLL在数据发射前需要220μs的建立时间。
(2)锁相环PLL
  PLL(Phase-Locked Loop)功能块包含有相位检波器,充电泵、集成的回路滤波器、VCO、异步时钟分频器、驱动器和晶体振荡器。除了晶振,PLL不需要其他外部元器件。基准频率和载波频率的关系为 fXTAL=fRF/32
  在PLL锁定前,锁定检测电路防止功率放大器发射.另外,如果失去载波频率,器件将关闭功率放大器。
(3) 功率放大器
  MAX7044的功率放大器(power amplitier)是一个高效率的、漏极开路、C类放大器,使用合适的输出匹配网络,功率放大器能够驱动简单的PCB环行天线和各种形式的50Ω天线。
  在典型应用电路中,使用电源电压+2.7 V,电路输出电平可达到+13 dBm,整个效率可以达到48%。
(4) 时钟缓冲输出
  MAX7044在CLKOUT引脚端提供一个缓冲的时钟输出(buffered clock output),可供微控制器等器件使用。CLKOUT的输出频率是晶振频率的1/16。对于315 MHz射频发射频率,使用的晶振频率是9.843 75 MHz,提供的时钟频率是615.2 kHz。对于433.92 MHz的射频发射频率,使用的晶振频率为13.56 MHz,提供的时钟频率为847.5 kHz。当器件在低功耗模式时,时钟输出无效。数据发射时,在220μs时间之后,时钟输出稳定。一个MAX7044的典型应用电路如图1所示。

2 基于MAX7033的接收器电路

MAX7033引脚功能如表2所列。

  MAX7033芯片内部包含有LNA、差分镜像抑制混频器、PLL、VCO、10.7 MHz IF限幅放大器、AGC、RSSI、模拟基带数据信号恢复等电路。
(1)电压调节器
  使用单3.0~3.6 V电源电压,直接连接AVDD、DVDD和VDD5到电源电压。使用单4.5~5.5 V电源电压,连接VDD5到电源电压。片上的电压调节器(voltage regulator)产生AVDD引脚端需要的3.2 V电压。DVDD和AVDD两个引脚端必须连接在一起,尽可能地靠近DVDD和AVDD引脚端连接1个0.01 μF的旁路电容到地(AGND)。
(2)低噪声放大器LNA
  LNA(Low-Noise Amplifier)是一个nMOS的共基共射放大器,需要使用片外的电感,具有3.0 dB的噪声系数和一12 dBm的IIP3。增益和噪声系数与在天线与LNA输入端之间的匹配网络和在LNA输出与混频器之间的LC谐振网络有关。需要从LNASRC引脚端连接一个电感到地(AGND)。这个电感设置在LNAIN引脚端的输入阻抗的实部,可以实现更多灵活的阻抗匹配,如使用PCB导线得到天线形式。对于50 Ω的输入阻抗,这个电感值为15 nH。注意这个电感值会受PCB导线长度的影响。

  LC谐振滤波器连接到LNAOUT引脚端,由L3和C2组成(见典型应用电路)。选择L3和C2,谐振在要求的射频输入频率。谐振频率由计算。式中,LTOTAL=L3+LPARASITICS;CTTOAL=C2+CPARASITICS。
  LPARASITICS和CCPARASITICS包括PCB板、引脚端、混频器输入阻抗、LNA输出阻抗的电感和电容。这些寄生参数不能忽略,否则会影响谐振滤波器的中心频率。

(3)自动增益控制
  当AC引脚端是低电平时,AGC(Automatic Gait Contr01)电路监控RSSI输出。RSSI的输出达到1.98V时,对应的射频输入电平为一62 dBm,AGC开关通过减少电阻控制LNA增益;当RSDSI电平下降到低于1.39V时,对应的射频输入电平为一70 dBm,LNA恢复高增益模式。
  当AC引脚端是高电平时和SHDN转向高电平时AGC电路不使能,LNA总是在高增益模式;当AC引脚端是低电平时和SHDN是高电平时,AGC功能恢复。
(4)混频器
  MAX7033采用独特的镜像抑制混频器(Mixer)结构可以不使用价格高的SAW滤波器。混频器单元是一个双平衡的混频器对,完成射频信号到10.7 MHz IF的IQ下变频,本振(L0)频率采用低端注入形式。电路具有44dB的镜像抑制能力。IF输出阻抗330Ω,可以采用330Ω的陶瓷滤波器。
  IRSEL引脚端是一个逻辑电平输入,可用来选择3个镜像抑制频率中的一个。当VIRSEL=0 V时,镜像抑制频率调谐在315 MHz。VIRSEL=VDDS/2,镜像抑制频率调谐在375 MHz;当VIRSEL=VDD5,镜像抑制频率调谐在433 MHz;当IRSEL引脚端不连接时,在内部设置到VDD5/2,不需要外部VDD5/2电压。
(5)PLL
  PLL(Phase-Locked Loop)功能块包含有相位检波器、充电泵、集成的回路滤波器、VCO、异步时钟分频器和晶体振荡器驱动器。除了晶振,PLL不需要其他外部元器件。VCO产生低端LO。基准频率、RF频率和IF频率的关系为
  
式中:M=1(VXTALSEL=VDD5),或者M=2(VXTALSEL=0 V)。
(6)中频和RSSI(Intermediate Frequency and RSSI)
  IF部分提供差分330Ω输出阻抗,可以与片外的陶瓷滤波器匹配。6个内部AC耦合限幅放大器提供大约65 dB增益,IF带通滤波器的中心频率10.7 MHz,3 dB带宽大约为10 MHz。
  RSSI电路解调IF信号,产生与IF信号电平成比例的直流电压输出,大约为14.2 mV/dB。
(7)晶体振荡器
  在MAX7033中的晶体振荡器(crystal oscillator),在XTALI和XTAL2引脚端之间呈现的电容大约为3 pF。使用不同的负载电容,将改变晶振的标准基准频率,如4.7547 MHz的晶振使用10 pF的负载电容。MAX7033的振荡器频率为4.756 3 MHz,有大约100 kHz误差。
  也可以使用外部基准振荡器驱动VCO,使用一个1 000 pF的电容交流耦合连接到XTAL2引脚端。
(8)数据滤波器
  数据滤波器(data filter)是一个二阶低通Sallen-Key滤波器,需要2个片上的电阻和外部电容组合。调节外部电容的数值,可以改变滤波器的截止频率,以适应不同的数据速率。
  MAX7033的应用电路如图2所示,元器件参数如表3所列。

3 PCB设计考虑
  恰当的PCB板设计是射频/微波电路设计的重要部分。在高频输入和输出引脚端使用控制阻抗的导线和使导线尽可能的短,以减少损耗和辐射。在高频,导线长度为λ/lO或者更长,其作用类似天线。保持导线尽可能地短,可以减少寄生电感。一般情况,2.54 cm(1英寸)的PCB导线长度,大约附加20 nH的寄生电感。寄生电感将影响实际的元件参数。例如:1.27 cm(O.5英寸)长的导线与一个100 nH的电感器连接,将增加额外的10 nH电感。使用宽的导线、可靠的接地或者电源板在信号导线的下面可以减少寄生电感。另外,所有的GND引脚端要求使用低电感连接到地,尽可能地靠近所有的VDD引脚端,连接退耦电容到地。

4 与微控制器的接口
  MAX7044和MAX7033可以直接与微控制器接口。
  微控制器的输出数据可以直接输入到MAX7044的数据输入引脚端(引脚端6,DA-TA),MAX7044可以通过时钟输出引脚端(引脚端5,CLKOUT),提供频率为fxTAL/16的时钟信号到微控制器。
  MAX7033的接收数据可以通过数据输出引脚端(引脚端25,DATAOUT)输出到微控制器。微控制器可以通过控制MAX7033的低功耗控制引脚端(引脚端27,SHDN)的电平状态(低电平有效),使MAX7033进入低功耗模式。
  采用MAX7044和MAX7033构成的无线收发电路,电路结构简单,用单片机控制进行的点对点无线收发,收发距离大于10O m,数据速率可达到1O0 kbps。

关键字:电感  放大器  阻抗 引用地址:基于MAX7044/7033的无线收发电路

上一篇:降低CDMA/W-CDMA蜂窝电话射频功耗的设计
下一篇:基于nRF24E1的嵌入式2.4GHz无线接入系统

推荐阅读最新更新时间:2024-05-13 18:12

电阻、欧姆定律和阻抗是什么意思
大家好,昨天我们已经介绍了电流和电压了,今天我将为大家介绍一个最基本的元器件--电阻,及与电阻、电流、电压相关的定律--欧姆定律。 电阻:电路中对电流通过有阻碍作用并且造成能量消耗的部分叫做电阻。电阻常用R表示。电阻的单位是欧,也常用千欧或者兆欧做单位。1k欧=1000欧,1M欧=1000000欧。导体的电阻由导体的材料、横截面积和长度决定。电阻的种类很多,从结构形式来分,有固定电阻、可变电阻和电位器三种。在电路中,电阻器的符号如图所示。 电阻可以用万用表欧姆档测量。测量的时候,要选择电表指针接近偏转一半的欧姆档。如果电阻在电路中,要把电阻的一头烫开后再测量。 阻值在兆欧以上,标注单位M。比如1兆欧,标注1M;2.7兆欧,标注2.7
[模拟电子]
低压低功耗CMOS电流反馈运算放大器设计
  放大器作为集成电路的一种重要的组成部分是国内外研究的热点。电压模式放大器有一个明显的缺点就是随着被处理信号的频率越来越高,电压模式电路的固有缺点开始阻碍它在高频高速环境中的应用。主要由于闭环增益和闭环带宽的乘积是常数,当带宽向高频区扩展时增益按比例下降,而且在大信号下它的输出电压转换速率也很低。为克服这些缺点,本文设计了低压状态下的运算放大器电流反馈运算放大器。运算放大器电流反馈运算放大器(CFOA)被广泛应用在模拟信号处理中,比如模数转换(ADC),滤波器以及许多其他通信系统中。运算放大器电流反馈运算放大器相对于电压反馈运算放大器的一个显著的优点就是有较快的转换速率和与增益设置无关的带宽, 80年代末期,基于互补双极工艺发
[模拟电子]
实现完美屏蔽和隔离 伍尔特电子推出高压双绕组耦合电感
凭借 WE-TDC HV技术,伍尔特电子推出经过持续优化后的SMT双绕组耦合电感。这款磁屏蔽电感,两个1:1绕组的隔离电压为 2000 伏,凭借较低的损耗和低杂散电感,从此类元件中脱颖而出。WE-TDC HV 产品系列包括 9 个不同型号 — 5 个采用 8038 封装,4 个采用 8018 封装。这些器件的高度仅为 1.8 毫米,在同类产品中独树一帜。 WE-TDC HV 电感适用 -40℃ 到 +125℃ 的工作温度范围,满足250 VRMS功能性隔离。产品可用于降压、升压、SEPIC、Zeta 和 CUK,或具备第二个无调节输出电压的转换器,以及具有高密度封装的隔离转换器(例如逆变器)。 目前元件以16 毫米卷带现货
[电源管理]
实现完美屏蔽和隔离 伍尔特电子推出高压双绕组耦合<font color='red'>电感</font>
一种接收前端三级低噪声放大器的设计
  在现代雷达接收机中,应用最广的结构是超外差结构。在该结构中,单片系统往往需要片外滤波器去除镜像信号,例如SAW滤波器,因而给系统的集成度带来影响。为了达到一定的镜像抑制比,而又不使用片外滤波器,通常使用镜像抑制混频器能提供60 dB左右的抑制度。但现代雷达接收机至少需要80 dB的抑制度,这就给镜像抑制混频器的设计增加了难度。   为解决该问题,研究工作主要集中在镜像抑制LNA的设计上。从文献中,可以看到通过LNA与陷波滤波器(notch filter)的连接,其单片LNA的抑制度分别达到20 dB和75 dB。本文结合雷达接收机中LNA的指标,通过设计电路结构提高抑制度,与后级的镜像抑制混频器连接达到了较高的镜像抑制比,
[电源管理]
一种接收前端三级低噪声<font color='red'>放大器</font>的设计
宽频带放大器,宽频带放大器电路原理是什么
宽频带放大器,宽频带放大器电路原理是什么? 宽频带放大器在仪表与通信系统中有着极广泛的应用,其信号可以是模拟或者数字形式的.这种放大器要求从零频或者接近于零频的极低频率开始的较大频带内提供均匀的放大.在设计一个满足需要特性的放大器时,应将有源器件的高频特性与无源网路元件结合考虑. 最常见的宽频带高频功率放大器是利用宽领带变压器做输入、输出或级间福合电路,并实现阻抗匹配。宽领带变压器有两种形式。一种是利用普通变压器的原理,只是采用高额磁芯来扩展频带,它可以工作在短波波段。另一种是利用传输线原理与变压器原理二者结合的所谓传治线变压器,其频带可以做得很宽。 简单介绍一下由传输线变压器与晶体管构成的宽频带高频功率放大器,
[模拟电子]
宽频带<font color='red'>放大器</font>,宽频带<font color='red'>放大器</font>电路原理是什么
共模电感Common mode Choke
共模电感(Common mode Choke),也叫共模扼流圈,是在一个闭合磁环上对称绕制方向相反、匝数相同的线圈。理想的共模扼流圈对L(或N)与E之间的共模干扰具有抑制作用,而对L与N之间存在的差模干扰无电感抑制作用。但实际线圈绕制的不完全对称会导致差模漏电感的产生。信号电流或电源电流在两个绕组中流过时方向相反,产生的磁通量相互抵消,扼流圈呈现低阻抗。共模噪声电流(包括地环路引起的骚扰电流,也处称作纵向电流)流经两个绕组时方向相同,产生的磁通量同向相加,扼流圈呈现高阻抗,从而起到抑制共模噪声的作用。 共模电感实质上是一个双向滤波器:一方面要滤除信号线上共模电磁干扰,另一方面又要抑制本身不向外发出电磁干扰,避免影响同一电磁环境
[模拟电子]
利用跟踪信号发生器增强频谱分析能力
  很长时间以来,频谱 分析仪与跟踪信号发生器一起,对有源和无源网络进行扫频标量频率响应测量。尽管许多频谱分析仪带有跟踪信号发生器选件,但是大多数这种信号发生器只能为分析仪的基本频带提供扫频信号。利用下面的方法还会覆盖许多频谱分析仪的第一扩展高频段。另外,也给出了一个允许对带有中频变换的被测部件进行扫描的方法。   图1给出了一个常见的具有跟踪源功能的RF频谱分析结构,在这个结构中,跟踪信号发生器由一个混频器、放大器和设定在第一个固定中频(IF)的RF信号发生器实现。对于这种方案,只有在分析仪扫描第一本振(LO)时,才能实现频率扫描。另外,分析仪还必须提供第一本振的输出采样。如果分析仪的分辨带宽(RBW)滤波器(不管是模拟还是数字
[测试测量]
基于LAMP和MOSFET的Hi-Fi耳机放大器电路图
任何追求高品质音频再现的发烧友都需要一个 Hi-Fi 耳机放大器。强大的混合设计结合了真空管 (LAMP) 和金属氧化物半导体场效应晶体管 (MOSFET) 两种强大组件的优点,可提供出色的声音性能。本文通过展示 LAMP 和 MOSFET 混合 Hi-Fi 耳机放大器的原理图电路图,让您了解该音频电路的神奇之处。 LAMP 和 MOSFET 组合式 Hi-Fi 耳机放大器由多种重要部件组成。 LAMP 的基本功能是电压放大器,可产生可识别的温暖且平滑的声音特征。 MOSFET 充当电流放大器,为 LAMP 信号增加了低失真和快速响应时间。 调节音量的顶级电位器是输入级的第一个组件。 LAMP管接收到此音频输入,开始以A类模式
[嵌入式]
基于LAMP和MOSFET的Hi-Fi耳机<font color='red'>放大器</font>电路图
小广播
最新应用文章

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 安防电子 医疗电子 工业控制

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved