1 PWM型开关电源原理
PWM型开关电源的结构框图如图1所示.
市电信号经过输入滤波和整流滤波后实现AC/DC转换,将电网交流电直接整流为较平滑的直流电,以供下一级变换;再经过逆变器后实现DC/AC转换,将整流后的直流电变为交流电,这是PWM型开关电源实现PWM控制的核心部分,其频率越高,体积、重量与输出功率之比越小.最后在通过输出整流与滤波,根据负载需要,提供稳定可靠的直流电源.
2 PWM控制原理
开关电源控制原理图如图2所示.图中,开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E可通过开关K和滤波电路提供给负载RL为负载提供能量;为使负载能得到连续的能量,开关稳压电源必须要有一套储能装置,在开关接通时将一部分能力储存起来,在开关断开时,向负载释放[4].图2中,由电感L、电容C2用以储存能量,在开关断开时,储存在电感L和C2中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量.因二极管D使负载电流连续不断,所以称为续流二极管.AB间的电压平均值EAB可表示为:
EAB=TON|T×E (1)
间和工作周期的比例改变,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例,便能使输出电压V0维持不变.改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法为“时间比率控制”(Time Ratio Control,缩写为TRC)[1].这里按照TRC原理选择了开关周期T恒定,通过改变脉冲宽度TON来改变占空比,这种方式称为脉宽调制方式(PWM),用来实现对电压幅值频率的控制.
3 DSP芯片TMS320LF2407简介
TMS320系列DSP的体系结构是专为实时信号处理而设计的,该系列DSP集实时处理能力和控制外设功能于一身,为实现控制系统提供了理想的解决方案.
TMS320LF2407在TMS320 系列的基础上有以下特点[2]:
(a) 高性能10位模/数转换器(ADC)的转换时间为500ns,提供多达16路的模拟输入.
(b) 基于TMS320C2xx第洌的CPU核保证了其与TMS320系列DSP的代码兼容.
(c) 具有两个事件管理器模块EVA和EVB,每个均可提供两个16位通用定时器和八个16位的PWM通道.
(d) 高达24K的FLASH程序存储器.
(e) 可扩展外部存储器.
(f) 五个外部中断(两个驱动保护、复位和两上可屏蔽中断).
4 利用TMS320LF2407实现SPWM
4.1 SPWM控制的基本原理
所谓SPWM即PWM中脉冲宽度按正弦规律变化.由采样理论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上,其效果基本相同可知,为了在输出端得到正弦波,就需要输出一系列幅值相等而宽度不等的矩形波.采用三角载波的规则采样法,就可以得到宽度按正弦规律变化的矩形波.如图3所示,每个脉冲的中点都以相应的三角波的中点对称,在三角载波的负峰时刻TD对正弦波采样得到D点,过D点作一水平直线和三角波分别交于A点和B点,在A点时刻tA和B点时刻tB控制功率器件的通断.可见AB长度即为脉冲宽度,由图可得如下关系式:
AB=Tc(1+sinωctD)/2 (2)
根据这一关系式可知,如果一个周期内有N个矩形波,则第I个矩形波的占空比为:
D1=0.5+0.5sin(I×2Л/N) (3)
4.2 利用TMS320LF2407实现SPWM控制
TMS320LF2407中EVB的定时器3个有三个与之相关的比较单元:比较单元4、5、6,每个比较单元都有一个相应的比较寄存器:CMPR4、CMPR5和CMPR6.每个比较单元都可单独设置成比较模式和PWM模式,设置为PWM模式时,每个比较单元有两个极性相反的PWM输出.因此利用TMS320LF2407可实现对三相桥式逆变电路的SPWM控制.在周期寄存器T3PR的值一定的情况下,通过改变比较寄存器的值就可以改变输出矩形脉冲的宽度[3].
根据式(3)所得的占空比表达式,再利用通用定时器比较单元的PWM特性,就可以很容易地实现SPWM.首先介绍一下产生PWM的寄存器设置,其步骤如下:
(1) 装载比较方式控制寄存器ACTRB.
(2) 如果使能死区,则设置和装载死区时间控制寄存器DBTCONB(如使能则可避免上下桥臂同时输出触发脉冲.)
(3) 设备和装载定时器3周期寄存器,即规定PWM波形周期.
(4) 初始化EVB的比较寄存器CMPR4、CMPR5、CMPR6.
(5) 设置和装载定时器3的控制寄存器T3CON.
(6) 更新比较寄存器的值,使输出的PWM波形占空比发生变化.
具体的程序设计方法如下:
(1) 系统初始化后根据载波频率和信号频率计算出每个周期需要输出的矩形波个数,从而确定定时器的周期,以设置频率参数及脉冲个数.
(2) 根据式(3)计算出每个矩形脉冲的占空比,用占空比乘以周期寄存器的值,从而计算出比较寄存器的值.该过程作为计算子程序,并使脉冲指针个数I加1.
(3) 在周期中断子程序中将计算所得出的比较寄存器的值送到比较寄存器,当达到一次载波周期时置相应的标志位.
(4) 主程序根据标志位来判断是否已完成一个周期的操作.如果标志位TC上已置1,则清标志位,调计算占空比子程序,然后进入等待状态;如果标志位上未置1,则直接进入等待状态.其主程序流程图如图4所示.
虽然利用单片机也能实现SPWM,但运用DSP强大的数据处理能力及其速度优热可以提高电源控制系统的精度和实时性,满足逆变电源更高的要求,为电源控制系统的全数字化提供必要的软硬件基础.其与单机的性能比较见表1.
表1 DSP与单片机的性能比较
总线结构 | 数据处理能力 | 指令执行时间 | 乘加运算(μs) | PWM(μs) | 正余弦查表(μs) | 速度测量(μs) | 电流控制(μs) | |
单片机 | 共用总线 | 差 | 多周期 | 2 | 2 | 17.2 | 49.6 | 40 |
DSP | 并行总线 | 很强 | 单周期多功能指令 | 0.050 | 0.050 | 1.9 | 5.7 | 4.3 |
5 仿真结果
在软件设计的基础上结合硬件,得到了在eclectonics workbench环境下经正弦调调制而未整流滤波的仿真结果,如图5、6、7所示.
由图5、图6比较可以看到,输出电压频率为40Hz,负载分别在10Ωt和10kΩ时输出的波形为很好的正弦波,频率符合要求,可见负载的变化对输出结构影响不大;由图5图7可以看到,当负载为10Ω时,输出电压频率分别在40Hz和400Hz时的输出波形变化不大,可见频率变化对输出波形影响也不大.
由仿真结果可以看到基于DSP芯片的PWM型开关电源系统具有稳定快、失真小、负载对系统影响小等特点,而且频率可在软件部分调整,这为其应用于对精度要求高的尖端电子设备提供了保障.
上一篇:瑞萨发布R2J24020F族智能电池IC
下一篇:FA5310开关电源控制IC及其应用
- 热门资源推荐
- 热门放大器推荐
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况