满足新应用需求的先进PFC技术及解决方案

最新更新时间:2009-03-17来源: EEWORLD关键字:PFC技术  IEC61000-3-2  FCCrM  DCM 手机看文章 扫描二维码
随时随地手机看文章

         

  功率因数校正(PFC)是电源设计人员面临的重要任务。根据IEC61000-3-2谐波标准中的D类规定,功率在75 W以上的个人计算机和电视机等电子系统的电源要进行功率因数校正。

      根据输入电流控制原理的不同,PFC可以分为不同的类型,如临界导电模式(CrM)、不连续导电模式(DCM)、连续导电模式(CCM)和频率钳位临界导电模式(FCCrM)等。CrM的的主要特征是电流有效值(RMS)大,开关频率不固定,常用于需要简单控制方案的照明和交流适配器等低功率应用,典型解决方案如安森美半导体NCP1606;DCM的主要特征是电流有效值最高,线圈电感较低及稳定性最佳,常见于中低功率应用;CCM的主要特征是总是硬开关,电感值最大,电流有效值最小,在较高功率(>300 W)应用中特别受到青睐,典型解决方案如安森美半导体NCP1654;FCCrM的主要特征是电流有效值大,频率被限制,线圈电感较小,在中等功率条件下具有极高能效,典型解决方案如安森美半导体NCP1605。

      值得一提的是,FCCrM可以视作带有频率钳位功能(由振荡器设定)的临界导电模式,综合了CrM和DCM的优点:DCM限制最大开关频率,而CrM降低最大电流应力。总的来看,FCCrM解决方案似乎拥有最高的能效。

       新的应用需求为PFC提出更高要求
      一些新的应用需求推动着业界开发新的PFC技术。这其中颇为受人瞩目的就是新兴的能效标准要求计算机ATX电源具有越来越高的能效。例如,80 PLUS银级标准(等同于“能源之星”5.0版计算机电源标准及CSCI标准第三阶段目标)要求,到2010年6月,多路输出ATX电源在20%、50%和100%负载条件的能效分别达到85%、88%和85%,详见表1所示。

      要提高ATX电源能效,以满足最新能效标准的更高要求,重要的是以系统性的途径来分析功率损耗来源,并针对性地降低功率损耗。通常而言,我们可以将ATX电源分为PFC段、主开关电源段和次转换器段。以常见的75%能效ATX电源为例,据测算,PFC段的损耗要占总损耗的40%。因此,将PFC段的能效提至最高,有利于实现更高的系统总能效。这就需要优化PFC控制器及其工作模式与其它元器件的选择。


                         表1:80 PLUS等能效标准对多路输出ATX电源的能效要求  

      此外,液晶电视市场近年来高速发展,而纤薄型设计则为液晶电视提供特别的卖点,受到消费者的青睐。最新的液晶电视设计更是趋向于将厚度降至10 mm以下,这就使元器件高度受到严格限制,设计人员必须尽可能采用更小型的元器件,并降低安装高度。PFC段同样受到这方面的制约,值得一提的是,缩小PFC段元器件能够帮助系统降低高度。

      在这些背景下,一些新的PFC拓扑结构已经开始涌现和应用。其中尤以交错式PFC和无桥PFC为典型。我们将探讨这两种新PFC拓扑结构的特征、解决方案及性能测试结果。

      交错式PFC的优势及解决方案
      交错式PFC的主要想法是在原本放置单个较大功率PFC的地方并行放置两个功率为一半的较小功率的PFC,参见图1。这两个较小功率PFC以180°的相移交替工作,它们在输入端或输出端累加时,每相电流纹波的主要部分将抵消。虽然交错式PFC使用较多的元器件,但其好处也很明显,如150 W的PFC就比300 W的PFC更易于设计,便于采用模块化的方案,且两个DCM PFC就像一个CCM PFC转换器,这就简化电磁干扰(EMI)滤波,并减小输入电流有效值。特别是采用两个较小PFC的设计能够支持厚度低至10 mm的超薄型液晶电视设计,且能效极高。


            图1:采用两颗NCP1601 PFC控制器实现的交错式PFC架构的功能框图。

       交错式PFC有两种具体实现方案:一为主/从(Master/Slave)方案,一为独立相位(Independent Phases)方案。主/从方案指主分支自由工作,而从分支相对于主分支180°相移工作。主/从方案的主要挑战在于保持在CrM工作模式(没有CCM模式,没有死区)。独立相位方案指每个相位都恰当地工作在CrM或FCCrM模式,而两个分支相互配合以设定180°相移。独立相位方案的主要挑战是保持准确的相移。安森美半导体的双NCP1601交错式PFC方案是一种独特的FCCrM方案,适合输入电压范围较宽的应用。在这种方案中,2颗NCP1601驱动2个独立的PFC分支,这2个分支具有相同的导通时间因而具有相同的开关周期,它们同步但彼此独立工作,从而保证DCM工作模式(零电流检测),没有CCM工作风险,且在满载时两个分支都进入CrM工作模式。


                   图2:安森美半导体双NCP1601交错式PFC方案在不同负载范围下的能效。

      对基于安森美半导体NCP1601交错式PFC方案的宽输入范围、300 W PFC预转换器进行的测试显示,这解决方案在很宽的负载范围内(从20%到100%)、90 Vrms电压条件下实现95%的能效,如图2所示。

      无桥PFC的优势及解决方案
      传统有源PFC中,交流输入经过EMI滤波后会经过二极管桥整流器,但在整流过程中存在功率耗散,其中既包括前端整流桥中两个二极管导通压降带来的损耗,也包括升压转换器中功率开关管或续流二极管的导通损耗。据测算,在低压市电应用(@90 Vrms)中,二极管桥会浪费大约2%的能效。有鉴于此,近年来业界提出了无桥PFC拓扑结构。实际上,如果去掉二极管整流桥,由此带来的能效提升效果很明显。这种PFC电路采用1只电感、两只功率MOSFET和两只快恢复二极管组成。

      对于工频交流输入的正负半周期而言,这种无桥升压电路可以等效为两个电源电压相反的升压电路的组合。其中左边的蓝色方框是PH1为高电平、MOSFET开关管M2关闭时的开关单元,右边的橙色方框是PH2为高电平、MOSFET开关管M1关闭时的开关单元。当PH1为高电平、PH2为低电平时,电路工作在正半周期,这时M2相当于体二极管(body diode),PH2通过M2接地;而当PH1为低电平、PH2为高电平时,电路工作在负半周期,这时M1相当于体二极管,PH1通过M1接地。


                                               图3:传统的无桥PFC结构示意图。

      相对于传统PFC段而言,这种无桥PFC节省了由二极管整流桥导致的损耗,但不工作MOSFET的体二极管传递线圈电流。最终,这种结构消除了线路电流通道中一个二极管的压降,提升了能效。但实际上,这种架构也存在几处不便,因为交流线路电压不像传统PFC那样对地参考,而是相对于PFC段接地而浮动,这就需要特定的PFC控制器来感测交流输入电压,而这种结构中的简单电路并不能完成这项任务。这种架构也不能方便地监测线圈电流。 此外,EMI滤波也是一个主要问题。

      图4是Ivo Barbi无桥升压PFC架构的新颖解决方案,这种方案中没有全桥,相反,PFC电路的地通过二极管D1和D2连接至交流线路,且每个端子用于1个PFC段。故这种解决方案可视作2相PFC,其中2个分支并联工作。这种架构也省下了电流通道中的一个二极管,并因此提升了能效。这种2相式架构并不需要特定的PFC控制器,具有增强的热性能,且负相总是接地,解决了EMI问题。


                                         图4:改进的Ivo Barbi无桥升压PFC架构

       安森美半导体基于这种架构开发了800 W PFC段的原型。这原型采用NCP1653 PFC控制器及MC33152 MOSFET驱动器。经测试,这原型在90 Vrms、满载、无风扇(机箱打开,室 温)条件下的能效达94%,而在100 Vrms时达95%。在20%负载时能效更接近或超过96%。这种无桥PFC架构将是适合大功率应用的一种高能效解决方案。

      总结:
      交错式PFC和无桥PFC等新颖拓扑结构的先进PFC技术可用于满足功率大于75 W电源的新趋势,有利于设计厚度低至10 mm以下的超薄型液晶电视,及满足80 PLUS等能效标准越来越高的要求。安森美半导体身为全球领先的高性能、高能效硅解决方案供应商,提供基于NCP1601的交错式PFC和基于NCP1653的无桥PFC等创新解决方案,具有小外形因数,适用于紧凑型设计,并减少PFC段的功率损耗,提供极高的能效,符合严苛的能效标准要求,帮助客户在市场竞争中占据先机。

关键字:PFC技术  IEC61000-3-2  FCCrM  DCM 编辑:汤宏琳 引用地址:满足新应用需求的先进PFC技术及解决方案

上一篇:电源完整性分析应对高端PCB系统设计挑战
下一篇:安森美半导体推出过压保护器件NCP362

推荐阅读最新更新时间:2023-10-18 14:45

Vicor 推出隔离式、稳压 DC-DC 模块的全新低功耗 DCM2322 系列
高功率密度、轻量级和易用性是为广泛机器人、无人机、轨道交通、通信和国防、航空航天应用设计隔离式稳压 DC-DC 转换器系统时必须考虑的关键因素。最新 DCM2322 ChiP 系列是 Vicor DCM3623 系列的低功耗版本,可充分满足这些重要需求。 最新系列采用 22 x 23 x 7 毫米 ChiP 封装,可为工程师提供 43 — 154V、14 — 72V 以及 9 — 50V 的宽输入电压范围,其功率级从 35 到 120W 不等,效率高达 90.5%。Vicor DCM 采用高频率、零电压开关拓扑,可实现业界领先的散热及电气性能,其功率密度比同类 DC-DC 转换器高 5 倍。 封装尺寸:0.97 x 0.9
[电源管理]
功率因数校(PFC)正标准优化解决方案
  人们都倾向于按照基本的60Hz或50Hz频率考虑电力线上的能量——这也是电站的涡轮和发电机产生电压的方式。当然,如果有无功负载,电流就会滞后于电压。这就是“功率因数”,对吗?但难道它仍然是关于50Hz或60Hz时的“实际”和无功元件吗?也对也错。遗憾的是,这种概念化过程有些太过简单了。   在电力配送系统中,对功率因数校正(PFC)的理解通常是在电力配送系统中的某些点增加(一般来说)电容性电抗以抵消电感性负载效应。我们可以说是“无功”负载,但电源工程师在解决功率因数问题时通常最关心的是电机负载。校正时可以采取电容阵列或“同步调相器”(一种无负载同步电机)的形式。   更广泛地说,在使用AC-DC电源转换的任何电力线
[电源管理]
自动驾驶下半场:DCM 技术如何突破雷达感知瓶颈?
作为 自动驾驶 系统的“眼睛”,雷达通过对目标物体发射并接收电磁波,由此获得目标至电磁波发射点的距离、多普勒频率、方位角、仰角等信息。相比摄像头等其他 传感器 ,雷达几乎不受天气与光线的影响,能够实现全天时、全天候探测,因此也是实现高级别自动驾驶技术的关键传感器。 在过去的30年,大部分汽车雷达采用调频连续波(FMCW)技术,雷达 信号 处理是在 模拟 电路中完成的。近几年随着自动驾驶技术向更高级别过渡,对汽车雷达的分辨率和准确度提出了更高要求,更为先进的数字编码调制( DC M)技术受到了关注。在DCM中,信号处理主要以数字方式进行。本文将从多个维度探讨DCM 雷达的技术优势。 FMCW 与 DCM 雷达技术 FMCW
[汽车电子]
自动驾驶下半场:<font color='red'>DCM</font> <font color='red'>技术</font>如何突破雷达感知瓶颈?
基于CS1500设计的90W高效PFC电源技术
本文介绍了CS1500主要特性,方框图,基本应用电路和材料清单,以及90W高效 PFC LLC谐振转换器参考设计电路图和材料清单(BOM). CS1500是Cirrus 公司的适用于通用输入的高性能功率修正因素(PFC)控制器,采用有所有权的数字算法的不连续导通模式(DCM),具有可变的接通时间和可变频率控制,从而保证PFC为一. CS1500的保护特性包括过压,过流,超功率,开路和短路以及超温保护,主要用在电源和照明镇流器设计. 图1.CS1500方框图 图2.CS1500基本应用电路图 应用电路中元件数值表: 90W高效PFC LLC谐振转换器参考设计 CS1500 90W, High-efficiency PFC w/
[电源管理]
基于CS1500设计的90W高效<font color='red'>PFC</font>电源<font color='red'>技术</font>
Vicor DCM™ 系列又添新成员
产品系列非常广泛的 DCM™ 系列最新成员采用 3623(36 x 23 毫米)ChiP (Converter housed in Package™) 封装,支持 1,032W/in3 无与伦比的功率密度。最新 80W DCM ChiP 支持 9V 至 75V 宽输入电压范围,可提供 12V、24V、28V 和 48V 额定输出电压。 该DCM ChiP 是一款 DC-DC 转换器模块,可提供一个业经验证的、比其它分立式解决方案更快的电源系统设计选项。DCM 支持宽范围、未稳压的工作输入电压,可生成一个稳压隔离式 DC 输出。DCM 采用高频率零电压开关 (ZVS) 拓扑,可在其整个输入电压范围内始终如一地提供高效率。
[电源管理]
Vicor  <font color='red'>DCM</font>™ 系列又添新成员
满足新应用需求的先进PFC技术及解决方案
            功率因数校正(PFC)是电源设计人员面临的重要任务。根据IEC61000-3-2谐波标准中的D类规定,功率在75 W以上的个人计算机和电视机等电子系统的电源要进行功率因数校正。       根据输入电流控制原理的不同,PFC可以分为不同的类型,如临界导电模式(CrM)、不连续导电模式(DCM)、连续导电模式(CCM)和频率钳位临界导电模式(FCCrM)等。CrM的的主要特征是电流有效值(RMS)大,开关频率不固定,常用于需要简单控制方案的照明和交流适配器等低功率应用,典型解决方案如安森美半导体NCP1606;DCM的主要特征是电流有效值最高,线圈电感较低及稳定性最佳,常见于中低功率应用;CCM的主
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved