一种适合教学的开关电源设计及调试

最新更新时间:2009-09-27来源: 现代电子技术 关键字:开关电源  TL494  PWM  MOSFET驱动 手机看文章 扫描二维码
随时随地手机看文章

  0 引 言

  线性稳压电路具有结构简单,调整方便,输出电压脉动小的优点,但缺点是效率低,一般只有20%~40%,并且比较笨重。开关型稳压电路能克服线性稳压电源的缺点,具有效率高,一般能达到65%~90%,并且体积小,重量轻,对电网电压要求不高,因而在实际生活中得到广泛应用。也正因为其应用的广泛性,相应专业的学生就更应该深刻和熟练地掌握它,在此以设计脉冲宽度调制型开关电路(PWM)为基础,详细解说该系统的调试过程。

  1 系统设计原理

  PWM型的开关电源整体框图如图1所示。变压、整流、滤波模块处理起来比较简单,只要采用相应的变压器、单相全波整流、电容式滤波即可实现,这里不用更多的篇幅介绍。此系统的核心模块是方框图中的闭合(负反馈)模块。如果直接采用Boost型DC-DC升压器,实现起来简单,但输出/输入电压比太大,占空比也大,而将使输出电压范围变小,难以达到较高的指标,且为开环控制。对此采用Maxim公司生产的专用开关芯片TL494芯片,它采用开关脉宽调制(PWM),效率高,外围电路也较简单,可以方便实现闭环控制。

  1.1 TL494工作原理

  TL494内部结构如图2所示,它是一种固定频率可自行设置,并应用脉空调制的控制电路,其中,振荡频率fosc=1.1/(RTCT)。具体来讲,由于误差放大器输入口1,2(或3,4)的值不等,产生偏差,偏差送入PWM比较器与锯齿波(锯齿波的频率由振荡频率确定,幅值是定值)比较,在偏差大于锯齿波范围内时,9口(或10口)输出低电平,在偏差小于锯齿波范围内时,9口(或10口)输出高电平。若偏差值越大,TL494输出高电平的区间越小。由此可见,通过调整误差放大器输入口的偏差可改变占空比。

  1.2 升压变换器的工作原理

  如图3所示,通过控制开关管Q1的导通比,可控制升压变换器的输出电压。它的工作原理是:设开关管Q1由信号VG控制,当VG为高电平时,Q1导通,反之,Q1关断。当Q1导通时,电感两端电压VL=Vi,电感储能增加,同时负载由电容供电。当Q1断开时,因电感L上的电流不能突变,故电感电流iL向电容和负载供电,电感上储存的能量传递到电容、负载侧。此时,iL减小,L上的感应电动势VL<0,所以Vo>Vi。由此,当Q1导通的时间越长(即占空比越大),电感上储存的能量越多,Vo也越大。

  2 系统总体设计

  基于前面的分析,设计的系统接线图如图3所示。

  误差放大器的反相端2口输入给定值(可用单片机实现,限于篇幅,不做介绍),用来控制输出电压;同相端1口输入/输出电压的反馈电压,形成闭环控制。当输出电压高于期望值时,反馈输入1口的电压升高,误差放大器的输出增加,占空比减小;当输出电压减小时,基本可以做到与期望值相等,从而维持输出电压的稳定。若想增大输出,可升高2口的电压。控制过程如下:原系统稳定,当升高2口电压,1口电压瞬时不变,误差放大器输出减小,占空比变大,电压升高。若想减小输出,可降低2口的电压。

  3 系统调试

  在确定上述总体设计后,采用分模块的调试方法进行电路调试。

  3.1 TL494性能测试

  按图4接线,测试2口的输入电压(误差放大器反相端2口采用基准电压输入),改变1口的输入电压,观察9,3口的输出波形。由实验可以得到:TL494的基准电压是3.5 V;输出波形为PWM波;误差放大器工作在非线性区,只有当输入(1,2)口的偏差在零到几十个毫伏之间时,PWM才是可调的;改变1口的电压,可改变PWM的占空比。

  3.2 升压变换器的工作性能测试

  按图5接线,给1口加入使开关管达到饱和的方波信号:

  (1)改变方波信号的占空比和方波信号的频率;

  (2)给输出端加上负载。

  由实验可以得到,改变占空比,可以改变输出电压的大小;加上负载,电压降低,但通过调节占空比,可使电压升高;方波信号的频率越大,改变占空比,调节输出电压的范围越小。

  3.3 联调

  在上述两步都能得到准确信息之后,将两模块进行联调,见图4。若无误,即可实现输出端稳定的电压输出,且可通过改变2口的给定值实现在一定范围内(升压)改变输出电压。具体范围与所选择电感、电容和系统工作的频率有关,限于篇幅,这里不做介绍。

  3.4 加入MOSFET(IRF640)驱动

  完成上述电路后,接下来要考虑系统的性能指标,除上述电容、电感、工作频率的参数外,性能指标的优越还与MOSFET有关。为此,在TL494的9口和IRF9540开关管之间加入驱动电路IR2111,如图6所示。

  4 结 语

  按上述步骤进行系统设计,不仅电路简单,可以比较深刻地掌握TL494的工作原理、开关电源的工作原理、负反馈的工作原理等,而且查找电路错误也比较方便。对于该电路的性能指标测试,由于元器件的参数不同,指标略有不同,但基本上各参数的指标都较高,如DC-DC变换器的效率可达85%以上。

关键字:开关电源  TL494  PWM  MOSFET驱动 编辑:金海 引用地址:一种适合教学的开关电源设计及调试

上一篇:基于NCP1337准谐振电源的分析和设计
下一篇:飞兆半导体推出全新升压开关 提高转换效率

推荐阅读最新更新时间:2023-10-18 14:49

高精度PWM(脉冲宽度调制)式12位D-A转换器
电路的功能 脉冲宽度调制式D-A转换器多用于慢速响应的电源控制电路。因为输出电压取决于占空比,所以只要调准满量程电压,就可成为高精度DAC。电路的选用普通器件,能以12位分辨率选定0~+10V电压。 电路工作原理 输入PWM频率4096倍的时钟信号,进行加法计数,直到IC1~IC3全满时,在A点输出一个“MAX”时钟周期信号,该信号一方面将电压数据装八IC1~IC3,另一方面使双稳态IC5翻转,Q=“H”,计数器处于减法计数态,然后开始减法计数,直至在A点又输出一个“MIN”的时钟周期信号,该信号一方面将电压数据重新装入IC~IC2,一方面使双稳态IC5翻转至原来状态,并进行加法计数,以后重复上面过程,电压数据值
[电源管理]
高精度<font color='red'>PWM</font>(脉冲宽度调制)式12位D-A转换器
一种高效反激式开关电源的设计与性能测试
由于传统开关电源存在对电网造成谐波污染以及工作效率低等问题,因此目前国内外各类开关电源研究机构正努力寻求运用各种高新技术改善电源性能。.其中,在开关电源设计中通过功率因数校正PFC(Power Factor Correction)技术降低电磁污染及利用同步整流技术提高效率的研发途径尤其受到重视。 本文设计并制作了一种高效低电磁污染的开关电源样机。测试结果表明,该电源具有优良的动态性能、较高的功率因数和工作效率,且控制简单,故具有一定的实际应用价值。 1 开关电源设计方案 开关电源的结构如图1所示,它主要由220V交流电压整流及滤波电路、功率因数校正电路、DC/DC变换器三大部分组成。 220V交流电经整流供给功率因数校正电
[电源管理]
一种高效反激式<font color='red'>开关电源</font>的设计与性能测试
基于PWM芯片(UC3842)的医疗开关电源设计方案
摘 要 :基于UC3842高性能电流模式PWM 芯片,提出一种医疗开关电源设计方案。 该设计AC-DC给医疗设备供电,采用单端反激式结构,实现90-264Vac供电,12V的直流输出,具有瞬态响应快、电磁兼容好、 输出电压精度高等优点,能够很好地满足医疗设备供电需求。    0 引言   医疗电源是对安规及EMI、EMC比较高的设备,作为绿色开关电源,将在21世纪给人类社会带来巨大的变化。性能优良的医疗设备系统离不开性能优良的控制模块,而控制模块的性能在很大程度上取决于供电电源的性能,所以高质量的供电电源系统在整个医疗系统中占有相当重要的位置。本文基于UC3842高性能电流模式PWM发生器控制的开关电源适合应用于
[模拟电子]
基于<font color='red'>PWM</font>芯片(UC3842)的医疗<font color='red'>开关电源</font>设计方案
STM32F7xx —— Timer
作用:输出PWM,测量脉冲长度,定时等。 一、基础定时器配置 // 基本定时器 #define TIMER_CHANNEL TIM3 #define TIMER_PREEMPT_PRIO TIM_PRIORITY #define TIMER_RCC_FUNC __HAL_RCC_TIM3_CLK_ENABLE #define TIMER_IRQ TIM3_IRQn #define TIMER_IRQ_FUNC TIM3_IRQHandler #define TIMER_DIV (10800 - 1) #define TIMER_PERIOD (1
[单片机]
增强型PWM抑制功能对于直列式电机控制的五大优势
解决问题的方法通常不止一种。有时使用最广泛的方法并不会产生最大利益。电机控制项目的系统设计人员使用各种电流测量方法确保电机高效运行并防止可能的损坏。在电机设计中有三种主要方法可测量电流。在本博文中,将回顾这三种方法,并分享直列式电机电流感应使用增强型脉冲宽度调制(PWM)抑制的五大优势。 如图1所示,基本上有三种不同的方法来测量三相电动机驱动系统中的电流:低侧、直流链路和直列测量。图1所示的是传统三相PWM逆变器,该逆变器使用三对功率MOSFET(绝缘栅双极晶体管IGBT也很常见)来驱动直流电动机。该图还包括高侧电流感应,其通常在显著错误情况下使用,比如接地电路短路的情况。   图1:三相电机驱动系统的各种电流感应方法
[嵌入式]
PWM在直流伺服系统中的应用研究
0 引言      伺服系统 是自动控制领域一种重要的 控制系统 ,随着科学技术的发展, 伺服系统 在现代工业、军事等领域发挥着日益重要的作用。 伺服 系统可以分为液压 伺服 系统、交流伺服系统、直流伺服系统等。液压伺服系统技术成熟,但存在漏油、易污染、难维护等缺点交流伺服系统性能虽已接近直流系统,但构成复杂,成本较高;PWM直流伺服系统则具有效率高、响应快、噪声小、调速范围宽等显著优点。随着电磁兼容技术的不断发展和解决,PWM直流伺服系统在工程中得到越来越多的重视和应用,本文提出并研究了一种基于直流PWM的速度伺服 控制系统 。 1 系统组成     1.1 PWM系统工作     PWM放大器的波形图如图1所示。若控制信号UC
[嵌入式]
单片机控制的步进电机PWM控制程序
8051单片机控制步进电机的C51语言编写的PWM控制程序 #include intrins.h #include stdio.h #include math.h #include UPSD3200.H #include upsd_pwm.h #define uint unsigned int #define uchar unsigned char PSD_REGS PSD8xx_reg _at_ csiop; #define KEYIO (~(PSD8xx_reg.DATAIN_A)) & 0x07 sbit CP=P4^7; sbit U_D=P1^1; void ini
[单片机]
一个简易型115VAC供电的彩色电视机开关电源
摘要:介绍一个工作于115VAC的简易型全分立元器件彩色电视机开关电源。该电源基于早年国内常用的三洋80P机芯电路,经过重新设计高频变压器以及调整元器件参数而成。文中给出基本原理,设计数据及测试结果,可供有意于开拓北美市场的电视机厂家参考。 关键词:彩色电视机 开关电源 1 引言 图1所示为220VAC供电的三洋80P机芯电源,它早年曾广泛使用在一些国内电视机中,其特点是:采用常规双极型功率管, 全分立元器件,电路简单,成本低,但 却能满足电视机基本稳压要求,而且EMI噪音特少。其缺点是:动态反应较慢,AC/DC转换效率稍低(最高只有80%),稳压范围较窄(只有VI%26;#177;10%)
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved