单片机控制的静电除尘电源调压系统

最新更新时间:2010-02-09来源: 微计算机信息关键字:静电除尘  单片机  三相交流调压  晶闸管 手机看文章 扫描二维码
随时随地手机看文章

  1. 引言

  静电除尘器有除尘效率高、运行和维修费用相对低廉等特点,在减少排放到大气中有害粉尘方面起着十分重要的作用,是当前使用较为广泛的一种环保设备。静电除尘器是利用高压静电吸附带电离子的原理进行除尘。一般来说,静电极板电压越高,对带电离子的吸附能力就越强,除尘效率越高。但电压越高,电场内会出现频繁的火花闪烁,甚至产生电弧,放电过程难以控制,除尘效率明显降低,这种情况应该避免。如果能够控制极板电压长时间维持在临界放电状态,就可以获得最佳的除尘效果并有效节约电力资源 。实验证明,基于单片机 80C196KC的静电除尘电源三相交流调压控制系统能够很好实现这一功能。

  2. 静电除尘电源主电路及交流调压结构

  2.1 电源主电路

  主电路电路如图 1所示,380V的三相工频交流电输入后,经过由三组反并联可控硅组成的三相调压电路进行调压,然后经三相高压硅整流变压器升压和整流,得到直流高压输出,硅整流变压器负高压输出经阻尼电阻供给静电除尘反应器。


  由于电源采用三相工频平衡供电,三相晶闸管同步移相调压,与常规单相硅整流电源相比具有如下特点:

  (1) 电网平衡供电,三相对称,功率因素近 100%;

  (2) 由于采用三相星形输入接线方式,单相输入电流仅为同等功率输出单相电源的五分之一。

  2.2 三相交流调压电路原理

  采用相位控制方式的交流电力控制电路称为交流调压电路,交流调压电路拓扑结构有很多种,本文中提到的三相交流调压主电路,是将两个晶闸管反并联后串接在每相交流电源与负载之间,如图1,在电源的每半个周期内触发一次晶闸管,使之导通。与相控整流电流电路一样,通过控制晶闸管开通时候所对应的相位,可以方便地调节输出电压的有效值,从而达到交流调压的目的。

  3. 基于 80C196KC的三相交流调压控制系统

  单片机控制模块硬件电路以微处理器为控制中心,兼有控制与监视的功能。通过输入接口接收各种采样、检测信号,再由软件程序进行计算处理后,经输出接口发出相应的控制信号,去协调、控制各部分电路的操作,达到其智能化控制的目的。本文中监控模块的控制电路采用了以 80C196KC单片机为主控的微机监控系统。它主要由主控电路、 CA6100控制信号输出电路、测量与信号采集电路、A/D转换隔离电路、 LCD液晶显示模块、LCD液晶显示模块、键盘接口电路、报警装置等部分组成,单片机控制模块见图 2所示。


  单片机采用 80C196CPU芯片,通过采集电路,电源主电路电压、电流信号转换为单片机可以识别的电压信号传送到 A/D转换通道,转换并和给定阈值进行比较,如发现过压或过流,则给出禁止信号 I,通过光耦隔离后控制 CA6100通用触发板,封锁触发脉冲。通过片内软件定时器,由高速输出口(HSO)产生一频率为 2HZ的方波信号作为电流、电压给定计数器的输入脉冲。利用 80C196的 PWM口,经过光耦输出可控的脉宽调制波,再经过平滑滤波器转化为 0~5V直流控制电压,直接控制 CA6100通用触发板,能够使输出脉冲移相范围在 5°~175°之间可调。

  3.1 主控电路设计

  80C196KC单片机有着丰富的内部资源,主控电路以单片机芯片为核心,扩展了一片外部数据存储器 6264,一片外部程序存储器 2764,一片外部功能扩展芯片 8155,辅以地址锁存器 74LS373,地址译码器 74LS138,复位电路,晶振电路,A/D转换隔离电路等。

  3.2 晶闸管触发电路设计

  三相交流调压是通过调节反并联晶闸管的导通角,来实现对电源输出电压的有效控制的,因此晶闸管能否稳定可靠地触发,是至关重要的。本控制系统采用 CA6100晶闸管通用触发板,其基本原理如图 3所示。


  CA6100通用可控硅触发板是以 40芯 CMOS大规模集成电路(专用芯片)为核心,利用锁相环技术( PLL)和多芯片合成技术( MCM),通过压控振荡器( VCO)锁定的三相同步信号间的逻辑关系设计出的一种晶闸管触发系统。0~5V的直流输入电压,可以控制输出脉冲的移相范围从 5°~175°连续线性可调,且晶闸管触发脉冲幅值可达到 15V/2A,能够满足静电除尘电源对晶闸管触发脉冲的要求。

  3.3 信号采集与检测电路设计

  系统主要检测一次电压、一次电流、二次电压和二次电流四路模拟量。采用电压和电流互感器分别对一次电压和电流进行检测。由于静电除尘电源二次电压输出很高,所以需经电阻分压,然后通过霍尔电压传感器进行检测,二次电流检测则采用回路串电阻的方式。这四路检测型号经过信号调理电路,进入单片机的 A/D转换口,单片机的 ADC模块分别对其顺序采样和 A/D转换。图 4为一次电流信号调理电路,主要包括整流、比例放大和二阶有源滤波三部分。

  3.4 液晶显示模块设计为了使装置的人机接口界面更加友好、直观,在本装置中采用中文液晶显示模块作为人机接口界面。采用液晶模块型号为 LCM320240ZK,显示内容 20×15行,内含 7602个简体中文字型。但是其工作时序和 80C196单片机不兼容,需要用到 8155扩展。其他管脚则直接与单片机相连接,读 (E)、写(R/W)端口分别和 80C196KC单片机的读、写信号相连,片选信号(CS1、CS2)由 38译码器提供。

  3.5 软件设计

  主程序完成整个模块的控制流程和子程序模块调用等功能。子程序模块完成整个装置的不同功能的实现,包括初始化模块、液晶显示模块、 A/D采集转换模块、PID调节稳压稳流模块等。其中初始化模块的主要功能是完成单片机的有关初始化设置,包括有关端口的选通、功能的选择,以及中断的允许等。 A/D采集转换模块是实现对被测信号的重复采样,并且在单片机中完成数据转换。稳压稳流模块的功能是采用 PID控制算法并结合 80C196单片机输出的 D/A电压信号进行调节,从而实现电压或电流的稳定,且具有软启动功能。


  3.6 火花快速检测的实现方式

  要提高静电除尘电源的除尘效率,每个除尘反应器都要工作在最佳火花率下。为了实现火花控制,必须检测火花放电现象。当产生火花放电时,会引起二次电流大幅度增加,利用这一特点就可以采用硬件直接比较的方法,通过 LM393将二次电流反馈值与设定的火花放电阈值进行比较,经 6N138光耦和 RS触发器后,接至单片机 80C196KC的外部中断口。由于中断级别很高(外部中断 XINT1),当检测到火花放电时,就执行相应的火花放电程序,记忆当前放电时的运行电压,并将当前运行电压降低到设定的火花回压点,运行电压再从回压点以分段上升的方式上升至上次放电时的运行电压,这样就保证了静电高压除尘电源始终保持在临界放电电压状态。

  4. 结语

  基于单片机 80C196KC的静电除尘电源智能控制系统实时响应快、精度高、可监控性好、抗干扰性强,通过实际运行证明,能够自动跟踪电场的变化,输出最佳电晕功率,从而使除尘效率大为提高,具有广阔的市场应用前景。

关键字:静电除尘  单片机  三相交流调压  晶闸管 编辑:金海 引用地址:单片机控制的静电除尘电源调压系统

上一篇:凌力尔特推出反激式开关稳压器LT3574
下一篇:凌力尔特推出双路线性LDO稳压器LT3029

推荐阅读最新更新时间:2023-10-18 14:54

小型单片机可编程控制延时开关电路模块设计
  可编程控制电路设计   采用的增强型STC8051单片机及其周围电路,组成最小单片机系统。使用的STC8051芯片内部具有下列硬件资源:增强型STC8051单片机中包含中央处理器(CPU)、4K字节程序存储器(Flash)、128字节数据存储器(SRAM)、2个16位可重装载定时器、1K字节电可擦写EEPROM、6个通用I/O口、硬件看门狗(WDT)、片内高精度R/C震荡1T时钟,内部时钟从5MHz~35MHz 可选,速度比普通8051快6~12倍,及8级高可靠复位等模块。   通过定义单片机P3口的第三位为输出,串口功能由P3.0和P3.1口分别接收和发送数据,调用内部时钟,结合定时器,实现延时时间和输出控制。    供电
[电源管理]
小型<font color='red'>单片机</font>可编程控制延时开关电路模块设计
自学单片机入门 小心踩坑
现在,有些人对于学习有了一些固定式的思维。说到学习单片机,他们就会问先学什么好,有人说先把C语言学了,然后在买本单片机教程书,然后从头看到尾,这样就相当于把单片机学完了。但是,我想说成功的几率很小,因为你会崩溃的,学C语言没有实操是不行的,学C语言至少花一个月吧(还不是很深入的),然后学单片机时,你会更奔溃,因为你不知道书中的一些概念时什么意思。 我觉得最好的上手方法是,直接上用单片机,买一些模块回来做实验,例如:流水灯制作,声控开关的操作,做个闹钟或者是时钟,做个小车。这些制作的过程网上教程很多,可以按照他们的制作过程做一个成品。这样单片机的一些功能基本就已经掌握了。 有一些书中把单片机的所有功能都说了一遍,有一点需要大
[单片机]
基于单片机的通用测试仪的设计与实现
1 引言 在许多工业控制和数据采集系统中,为了实现系统的小型化和便携化,通常采用上下位机形式的主从式结构。 由于MCU(微控制器)成本低,编程灵活、方便,实时性强,且具有一定的智能,因而通常使用它作为下位机的主控芯片,负责对现场数据的采集与传输,并控制相应的执行机构。上位机一般使用普通的PC机、笔记本电脑或工控机,负责对下位机传来的数据进行分析处理, 并根据处理结果控制下位机的操作。上下位机之间的数据通信接口目前一般使用RS-232和USB总线接口标准,相对于RS-232,USB 具有高速传输、热插拔、即插即用等优点。在本系统中,为了保证下位机高速采样数据能及时传送给上位机进行分析处理,我们采用USB总线来实现
[单片机]
基于<font color='red'>单片机</font>的通用测试仪的设计与实现
基于单片机的数码管动态显示器的设计方案
  1.前言   数码管静态显示系统需要占用过多的单片机口线,但是可以保证正常的亮度。为了解决占用口线较多而浪费硬件资源等问题,研究人员开发了一系列诸如74HC595的数码管驱动芯片,该类芯片可以实现串行转并行的工作方式,驱动数码管实现静态和动态显示。但是,这样一种工作方式暴露出控制系统实时性不足等问题,在某些对系统响应时间要求比较高的场合的应用产生了一定的限制。为了解决上述几个弊端,本文提出了一种基于单片机的数码管动态显示器的设计方案,以IAP15F2K61S2系列单片机做控制核心,并采用全新的软硬件电路实现数码管的动态显示。   2.控制系统硬件设计   2.1 显示器外观设计   本显示器采用六个共阳
[单片机]
基于<font color='red'>单片机</font>的数码管动态显示器的设计方案
AVR单片机的掉电保护
简介:在掉电时怎样保护数据到EEPROM中 我想在掉电时保存数据(3个字节)到EEPROM中,用BOD掉电检测,不知怎样使用。望高手指点: 1、在BOOT区设置好BODEN,BODLEVEL,后软件还要怎样设置? 2、掉电中断是否是产生复位?我的写EEPROM程序应该放在什么地方?他和其他复位怎样区别? 3、设置了BOOT区后,硬件上是否要加电源到一个管脚比较后才产生中断?? 掉电检测BOD的误解 AVR自带的BOD(Brown-outDetection)电路,作用是在电压过低(低于设定值)时产生复位信号,防止CPU意外动作. 对EEPROM的保护作用是当电压过低时保持RESET信号为低,防止CPU意外动作,错误修改
[单片机]
基于单片机的采用音叉斩波技术的微弱激光探测系统
我们采用光电探测器作为系统的光电转换元件,利用音叉进行机械斩波,使入射的恒定(或缓变)光信号直接转化为受调制的交流电信号,对其先进行交流耦合放大,克服了用光电探测器的随温度漂移的影响,再进行锁相放大,用单片机对系统的模拟输出信号进行数据采集,并进行非线性补偿,克服了一般微光探测系统的缺点。该系统具有结构简单、使用方便等特点。 系统设计 微光探测系统主要由内调制光电探测器、信号处理系统和单片机补偿系统组成。其总体结构如图1所示。 图1 微弱激光检测系统总体原理框图 温控电路系统 由于温度变化对光电探测器存在着影响,所以我们利用了桥式电路,通过铂电阻采集温度信号进行与设定值进行比较,从而利
[单片机]
基于<font color='red'>单片机</font>的采用音叉斩波技术的微弱激光探测系统
英飞凌Traveo II车身微控制器,为新兴汽车应用提供全面服务
动力传动系统电气化和高级驾驶辅助系统(ADAS)推动着驾驶方式变革,不断提升汽车舒适性及其他车身功能的丰富性和复杂程度。针对这一挑战,英飞凌科技股份公司近日宣布,面向整个市场推出 Traveo™ II 车身微控制器系列。该产品系列适用于各类汽车应用,包括车身控制模块、车门、车窗、天窗和座椅控制单元,以及车内智能手机终端和无线充电单元。Traveo™ II系列由赛普拉斯半导体公司研发,该公司此前被英飞凌科技股份公司所收购。 英飞凌高级副总裁兼汽车微控制器业务总经理 Peter Schaefer 表示:“英飞凌和赛普拉斯的强强联合,催生出了业内最全面的汽车微控制器产品组合。英飞凌的 AURIX 安全控制器产品组合,加上赛普拉斯
[嵌入式]
英飞凌Traveo II车身<font color='red'>微控制器</font>,为新兴汽车应用提供全面服务
stm32单片机按键控制的用法解析
1 /* 2 ::按键控制 3 PA8接LED,PE2接按键 4 */ 5 #include“stm32f10x.h” 6 void RCC_Configuration(void); 7 void GPIO_Config(void); 8 void Delay(__IO uint32_t nCount); 9 10 int main() 11 { 12 RCC_Configuration(); //系统时钟配置|使能GPIO口 13 GPIO_Config(); //LED控制配置 14 while (1) 15 { 16 if(!GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_2)) 17 { 18
[单片机]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved