基于DSP的智能功放开关电源设计

最新更新时间:2010-03-16来源: 电子设计工程 关键字:DSP  音响功放  开关电源  全桥移相 手机看文章 扫描二维码
随时随地手机看文章

  1 引言

  开关电源以体积小,重量轻,功耗低,效率高,纹波小,噪声低,智能化程度高,易扩容等,逐渐替代工频电源,广泛应用于各种电子设备。高可靠性、智能化及数字化是开关电源的发展方向。音响功放要求电源随着负载变化自动调整输出电压,进而调节功率,以提高电源动态性能,降低音响功放内部损耗,但目前的开关电源无法实现。选用TMS320F2812型DSP作为功放开关电源的主控制器,设计一种低功耗。适用于大型功放系统的新型的智能功放开关电源。

  2 智能功放开关电源设计

  图1为智能音响功放开关电源的总体原理框图,主电路采用交一直一交一直的结构。输入工频220 V交流电路经滤波电路后,再经单相桥式整流电路输出直流电压;变换电路采用全桥移相逆变电路将前端直流电变换为高频的交流电.然后经二次整流滤波输出稳定的直流电压;检测电路对输出电压信号采样后,送入控制电路,通过改变控制电路输出脉宽占空比来调节输出电压;保护电路实现过压和过流保护;功率检测电路对变换电路电流采样,当输出功率超过500 W时,产生过功率检测信号,驱动控制电路,降低输出电压:辅助电源电路为控制电路和各种运放供电。

智能音响功放开关电源的总体原理框图

  2.1 功放开关电源模块

  图2是功放开关电源的主电路,其中Vin是220 V交流输入经前端滤波和全波整流得到,电压为300 V。为全桥逆变电路的输入电压。VQ1、VQ2、VQ3、VQ4为IRFP460型大功率MOSFET,用作变换器开关管。由于IRFP460型MOSFET是多数载流子器件,开关速度极快,开通和关断时间的典型值一般20 ns,具有较高的击穿电压和较大的工作电流。此外,MOSFET的输入阻抗高,驱动电路较简单,只要在栅源之间加10 V左右的电压,就可使其饱和导通。L4、C5、C6构成辅助谐振网络,考虑到变压器原边漏感,谐振电感LT的取值一般比实际值小,这里选用电感值为34 μH的非线性饱和电感1μF的,考虑到高频脉冲变压器T1磁饱和问题,原边绕组串接防偏磁电容,VD15和VD16,VD17和VD18分别为全波整流二极管,L1、C13、EC1、EC2和L2、C14、EC3、EC4分别为+35 V和-35 V输出回路的滤波电路。

功放开关电源的主电路

  2.2 功放开关电源模块控制电路

  该控制电路以DSPTFMS320F2812为核心,主要包括产生移相脉冲波形、实时采样、功率调节、过压保护、过流保护、过功率保护、滤波算法和全桥移相算法等功能。采用TMS320F2812内置的16路12位高分辨率A/D转换电路实现电压、电流实时采样.每通道的最小转换时间为80 ns,A/D转换电路的输入信号电平范围为0~3 V。采样后,通过软件编程调整驱动全桥逆变器开关管的PWM波形移相角,实现稳压,同时当输出电压、电流过高或欠压时,DSP调用相应的子程序处理突发异常事件,起到保护作用。同时通过A/D采样输出电压电流信号进行运算,可精确测量输出功率,并调整事件管理器相关寄存器的值来调节输出电压。

  控制器的动态特性和稳压精度等性能与调节器设计密切相关。在功放开关电源的设计中,采用增量式PID控制算法。

  电源设计中的数字控制均采用数字采样控制,即根据采样时刻的偏差值计算控制量。PID控制的离散形式为:

公式

  式中,Ts为采样周期。

  式(1)为是位置式PID控制算式。为增加控制系统的可靠性,采用增量式PID控制算式,即DSP只输出控制量u(k)的增量,式(1)是第K次PID控制器的输出量,那么(K-1)次PID控制器的输出量为:

公式

  因此,增量式PID控制算法为:

公式

公式

  式(3)和式(4)就是该控制程序的增量式PID控制算式。增量式PID控制与位置式PID控制相比仅算法不同,但它只输出增量,减少了DSP误操作时对控制系统的影响,而且不会产生积分失控。图3为基于TMS320F2812的PID控制器的实现框图。

  

  2.3 功放开关电源的软件设计

  基于DSP的功放开关电源的软件设计主要实现以下功能:

  (1)全桥移相脉冲的产生 利用TMS320F2812事件管理器中两个比较单元直接输出电路脉冲。从移相基本原理来看,滞后桥臂相对于超前臂之间的驱动有一个周期性延时,其延时角即为移相角。设定由比较单元1输出的PWM1/PWM2分别驱动超前臂开关管VQ1、VQ3,由比较单元2输出的PWM3/PWM4驱动滞后臂开关管VQ4、VQ2。每个桥臂上下两管之间的驱动脉冲互补且带死区,固定超前桥臂的驱动在每周期的0时刻发出,则只要延迟移相角φ对应的时间,再发生比较事件则可得到滞后桥臂的驱动脉冲,从而实现0°~180°范围内的自由移相。

  (2)过压、过流、过功率的检测和保护 基于DSP的功放开关电源具有过压、过流、过功率、过热等保护功能。发生异常时.系统进入异常中断服务子程序进行处理,并及时闭锁PWM输出。为防止误动作,设定连续读取20个异常信号才认定为电路异常,否则不处理。各模块程序流程如图4~图6所示。

程序流程图

程序流程图

程序流程图

  3 实验结果

  依据前面的分析设计一台样机,开关频率为100 kHz,输出电压为±35 V和±42 V。对基于DSP控制音响功放开关电源进行带载实验,在轻载和重载条件下,输出电压纹波系数小于0.5%,输出电压精度小于O.5%。

  图7为DSP的移相波形。其中,通道1为比较单元1的PWM1输出,为超前桥臂;通道2为比较单元2的PWM3输出。从图7可清楚看到通道2滞后通道1约135°。图8为滞后桥臂零电压开通临界波形,输入电压约为175 V,输出功率为100W。图8中通道1为功率MOS管栅源电压Vcs波形,通道2为功率MOS管漏源电压VDS波形。关断VDS时为175 V,由图8可看到VDS先降到0,然后Vcs上升。此时开通开关管为零电压开通。负载越重,零电压开通现象越明显。在输出功率400 W时,输入功率为440 W,全桥移相变换器的转换效率为90.9%。

DSP的移相波形

滞后桥臂零电压开通临界波形

  实验结果表明:基于DSPTMS320F2812的功放开关电源输出波形良好,谐波含量少,可调节性优良,负载在全范围变化时,开关电源能够保持良好的输出性能,而且由于采用全桥移相软开关变换器,开关管工作在零电压开关状态,因此整个电源系统的功耗小,在高端大功率功放音响中具有较好的应用前景。

  4 结论

  将DSP作为音响功放开关电源的控制核心,实现了开关电源的数字控制,克服模拟控制系统中元件老化、热漂移等问题,并解决单片机控制电路负载、运算精度不高的问题。把全桥移相电路运用在音响功放开关电源中,有效地降低功放开关电源的内部损耗,使其应用于大功率音响功放系统。

  利用TMS320F2812的软件硬件资源,实现PWM控制、滤波、采样及各种系统保护功能,简化控制电路,提高电源设计和制造的灵活性;另外该控制器可控性好,易扩展,容易升级维护。

关键字:DSP  音响功放  开关电源  全桥移相 编辑:金海 引用地址:基于DSP的智能功放开关电源设计

上一篇:利用BCD白光LED驱动器解决方案
下一篇:藏区太阳能照明壁柜砖系统的设计实现

推荐阅读最新更新时间:2023-10-18 14:54

音频信号采集与AGC算法的DSP设计方案
过去,对大音频信号采用限幅方式,即对大信号进行限幅输出,小信号不予处理。这样,仍然存在音频信号过小时,用户自行调节音量,也会影响用户的收听效果。随着电子技术,计算机技术和通信技术的迅猛发展,数字信号处理技术已广泛地深入到人们生活等各个领域。其中语音处理是数字信号处理最活跃的研究方向之一,在IP电话和多媒体通信中得到广泛应用。   语音处理可采用通用数字信号处理器DSP和现场可编程门阵列(FPGA) 实现,其中DSP实现方法具有实现简便、程序可移植行强、处理速度快等优点,特别是TI公司TMS320C54X系列在音频处理方面有很好的性价比,能够解决复杂的算法设计和满足系统的实时性要求,在许多领域得到广泛应用。在DSP的基础上对音
[嵌入式]
用于单片机与电子装置中的开关电源
  该电源具有输出稳定、电压可调、体积小、性能稳定电路等特点。该开关电源输出电流为1.8A;输出电压可在+15V ~+5V范围内设定;输入电压适用于AC90V—240V50/60Hz的电源,所以可为电子实验测量装置供电,亦可用于6V/12V电瓶的充电。   电路原理   本开关电源电路为单边反激式,其核心IC-U1 UC3844AN(8)作脉冲宽度控制器。(PWM)(注意,电路图U1的画法使用了Protel中电源和地隐含的觋法,即U1的第⑦脚接电源VCC,第⑤脚接地)。在未起报时,通过R9给UI提供电源。当自激振荡形成后,T1第⑧脚的脉冲经D3整流后对U1供电。U1的⑥脚输出宽度不同的脉冲信号以控制功率场效应管M1开关。采
[电源管理]
用于单片机与电子装置中的<font color='red'>开关电源</font>
工程师不可不知的开关电源关键设计(一)
      牵涉到开关电源技术设计或分析成为电子工程师的心头之痛已是不争的事实,应广大网友迫切要求,电子发烧友推出开关电源设计整合系列和工程师们一起分享,请各位继续关注后续章节。    一、12V开关电源电路原理分析   该开关电源属于小功率开关电源,输入220V交流市电,输出12V直流电,最大输出电流1.3A,主要应用于小型设备的供电,比如楼宇监控设备等。其电原理图如图1所示。其控制核心器件为脉宽调制集成电路TL3843P(内含振荡器、脉宽调制比较器、逻辑控制器,具有过流、欠压等保护控制功能,最高工作频率可达500MHz.启动电流仅需ImA)。各引脚功能如下:(1)脚是内部误差放大器的输出端,通常与(2)脚之间有反
[电源管理]
工程师不可不知的<font color='red'>开关电源</font>关键设计(一)
一种基于DSP和USB的指纹识别系统设计
  指纹的不变性和唯一性使 指纹识别 技术成为目前应用最广泛的身份验证。近年来随着最新信息处理技术的发展、算法理论的研究以及计算机硬件的高集成和低成本, 指纹识别 的可靠性不断提高,实用范围不断扩大。由于识别系统数据量较大且要求尽快传入上位机进行处理,所以合理设计数据传输通道成为设计的一个重点。   通用串行总线 USB (Universal Serial Bus)是一种新型接口技术。它是由Intel、Microsoft等公司为解决日益增加的外设与有限的主板插槽与端口之间的矛盾而制定的一种串行通信标准。 USB 具有以下特点:(1)有较高的传输速率。 USB l.1支持全速和低速两种方式,全速速率为12Mbps,低速速率
[嵌入式]
一种基于<font color='red'>DSP</font>和USB的指纹识别系统设计
基于DA-14B33的开关电源电路设计流程
1.目的 :希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教.   2 设计步骤:   2.1 绘线路图、PCB Layout.   2.2 变压器计算.   2.3 零件选用.   2.4 设计验证.    3 设计流程介绍 (以DA-14B33 为例):   3.1 线路图、PCB Layout 请参考资识库中说明.   3.2 变压器计算:   变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就DA-14B33 变压器做介绍.   3.2.1 决定变压器的材质及尺寸:   依据变压器计算公式   
[电源管理]
基于DA-14B33的<font color='red'>开关电源</font>电路设计流程
基于高性能数字信号处理器的供电模块设计
  l 引 言   随着近年来芯片制造技术的不断发展,以及市场对高性能数字信号处理器的需求,新的功能更强,速度更快,功耗更低的数字信号处理器(DSP)产品不断推出,给电路设计带来了极大的方便。但与此同时,这些高性能器件的使用对供电模块的设计提出了更高的要求。高效、稳定、满足上电次序的供电模块设计具有重要意义,将直接影响整个系统的稳定,甚至整个系统的实现。   当前,DSP、FPGA等芯片的供电方式主要有3种:采用线性电源芯片,采用开关电源芯片,采用电源模块。这3种方式的一个总体对比如表1所示。   线性电源的基本原理是根据负载电阻的变化情况来调节自身的内阻,从而保证输出端的电压在要求的范围之内。由于采用线性调节
[电源管理]
基于高性能<font color='red'>数字信号处理器</font>的供电模块设计
COOLMOS器件在开关电源中的应用研究
1 主要特点 Infineon Technologies 公司的ICE2A165/265/365系列芯片是新型COOLMOS器件,该器件是PWM控制器和MOSFET开关管组合为一体的功率器件,它的主要特点如下: ●FET耐压为650V,导通电阻低; ●无需散热器即可输出较大的功率; ●具有过、欠压保护、过热保护、过流保护和自恢复功能; ●待机状态及空载时能自动降低工作频率,从而降低损耗; ●最低工作频率为21.5kHz,可以避免可闻噪声; ●电路结构简单,所需外部电路元件少,可大大减少开关电源的体积和重量,提高系统的可靠性。 由于ICE2A165/265/365系列芯片具有以
[电源管理]
基于高速双DSP的柔性机载实时图像跟踪系统研究
摘要:给出了以两片高性能TMS320C6414作为核心处理器,并辅以FPGA来实现系统逻辑时序控制,从而组成双DSP柔性机载实时图像处理系统的设计方案。同时对系统的硬件资源选择及工作流程进行了讨论。 关键词:DSP;并行处理;FPGA;柔性;超高速 1 引言 利用可见光成像与红外成像传感器实现实时目标成像跟踪是精确制导武器及机载成像光电系统研究的核心技术。伴随着实战环境日益复杂以及伪装、隐身等目标特性控制技术的飞速发展,机载实时图像跟踪系统的应用也日益广泛与深入。当跟踪目标并非一般地面慢速目标,而是其它快速运动目标如:低空导弹、无人驾驶飞机等时,系统将要求现有机载实时图像跟踪系统具有更高的技术性能。基于此,为了进一步提
[应用]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved