高性能LDO线性稳压器的设计

最新更新时间:2010-09-18来源: 国外电子元器件关键字:LDO  线性稳压器  平滑极点跟随  高PSRR  过压保护 手机看文章 扫描二维码
随时随地手机看文章

O 引言

    电源管理系统己成为当前集成电路产业发展中的一个热点,也是一个必不可缺的技术。没有电源管理,许多市场都将不存在。电源管理可使移动电话、笔记本电脑、遥控电视、可靠的电话服务等许多市场成为现实。现如今,电子产品己普及到工作与生活的各个方面,其性能价格比愈来愈高,功能愈来愈强,而供电的电源电路在整机电路中也是越来越重要。

    电源系统设计不合理,就会影响到整个系统的架构、产品的特性组合、元件的选择、软件的设计和功率分配架构等。在不同的电流负载下,如何保证LDO的稳定性,对LDO的设计是一个挑战。为此本文提出了一种LDO,并采用平滑极点跟随技术来解决不同电流负载下的极点偏移所导致的稳定性问题,从而提高了PSRR。同时,其过压保护电路也较好的防止了LDO输出供电电压过大的问题。

1 电路设计

    图l所示是本设计中LDO的电路结构。本LDO的基本结构由4级构成,主要利用误差放大器A1、电压放大器A2、电压缓冲器A3、电压调整管MPl和反馈网络构成的负反馈环路来维持VOUT的稳定。米勒电容C1用来为电路进行频率补偿,第二级与第三级的带宽要大,以便保证LDO处在稳定状态。同时也应保证在较宽的频带下调整管的输出电阻维持不变,以便得到较好的电源抑制性能。若将A2、A3、A4简化成一个15a.JPG,这样,一个两级米勒补偿的运算放大器的LDO增益带宽即可表示成:
    15b.JPG

15c.JPG

    式中,gm1是A1的跨导。由上式可以看到,增益带宽不随负载电容的变化而改变。其主极点P1可以表示成:
    15d.JPG
    Rol是A1的输出电阻,类似于两级米勒补偿的运放。一般都希望合并后的第二级放大器是一个单极点系统,由于米勒补偿引入的极点分离,次级点P2可近似表示成:
    15e.JPG
    式中,是的跨导,gm4是A4的跨导。为了让次级点一直在输出节点,第二级和第三级的输出极点必须推到一个比次级点大很多的很高的频率上。为了保证其稳定性,次级点需要保持在输出节点。

    对于一个内部米勒补偿的高增益系统,米勒补偿能够更好地在较大的负载电容范围内控制其稳定性,同时,它也会提供一个更好的瞬态响应。因为米勒电容形成的一个高频负反馈能直接耦合到输出,而高增益能够得到较好的直流及负载调制。不过测试结果显示,在负载电流大幅度变化时LDO会有50 mV左右的调整。这是因为直流负载调制的性能被bonding wire的寄生电容所限制,直流的IR压降通过寄生电容会直接恶化直流负载调制。

    LDO的输出电流要求从0到全负载(本设计为100mA),因此gm4也会随负载电流而变化,导致次级点P2也会随着负载电流的变化而变化。设计时可用平滑极点技术来解决这个问题,对于R和MP2串联组成的电路,它能动态的根据负载电流的变化来进行偏置。在大负载电流状况下,R和MP2能够偏置更大的电流以展宽电路带宽,同时降低输出电阻以适应次级点P2被推到更高的频率下。在小负载电流状态下,P2在较低的频率,并将R和MP2偏置在更窄的带宽和更大的电阻以保证其稳定性。静态偏置电流要尽量小,以保证电路的低功耗。

    调整管的栅极可设计成对地电阻明显大于对VDD的电阻,以使得调整管的栅极能够跟随电源的变化,从而得到更好的电源抑制性。为了产生一个较小的对VDD的电阻,可用R和M串联接在栅极与VDD之间。如果LDO的负载电流很小,那么,调整管将工作在弱反或亚阈值区,因此,MP的Vcs小于Vth,由于MP和MP的Vcs是相等的,MP被关掉。在这种情况下,R由前级电路的N管偏置。当LDO的负载电流很大时,调整管的Vcs增加,MP打开,并以一个很小的电阻开启与R串联,此时MP表现为一个开关。此时调整管栅极对VDD的电阻会极大地减小,同时前级偏置电流增加,带宽也会增加。从环路稳定性来说,它允许LDO通过动态的改变调整管栅极处的带宽和电阻来适应负载电流的改变,从而较好地提高电路
的瞬态响应。

2 过压保护

    当LDO的输出电源电压高于一定数值时,过压保护电路会自动启动,并对电源电压进行调整;而当电源电压恢复到正常范围时,保护电路又会自动关闭。图2为过压保护电路结构。需要注意的是,保护电路的调整管需要对大电流进行泄放,因而需要在版图上对其进行特殊处理。

15f.JPG

3 仿真结果

    本芯片采用SMIC 0.18μm CMOS Logic工艺设计并流片。芯片面积为l70x280μm,静态电流为200μA,电容采用MOM实现,其整体版图如图3所示。版图内大部分为功率管及米勒电容。输出电源线的走线应当尽量宽,同时可用多层金属,以减小线上电阻。

15g.JPG

4 结束语

    当负载电流从O到100 mA时,本设计的LDO瞬态特性电压纹波在50 mV以下,调整时间在20μs左右,同时,LDO的PSRR在低频时可达到63d-B,100 kHz时有35 dB,完全可以满足系统要求。

关键字:LDO  线性稳压器  平滑极点跟随  高PSRR  过压保护 编辑:金海 引用地址:高性能LDO线性稳压器的设计

上一篇:凌力尔特推出15A DC/DC 微型模块稳压器
下一篇:升特公司推出开关式稳压器平台 简便易用就像LDO

推荐阅读最新更新时间:2023-10-18 15:00

MIC5158组成的输出电压可调的线性稳压器电路
MIC5158组成的输出电压可调的线性稳压器电路 由MIC5158构成的输出电压可选择的线性稳压器电路如图所示。在该电路中,当输入控制端的电压为高电平时,输出就为5V;当输人控制端的电压为低电平时,输出就为3.3V。
[电源管理]
MIC5158组成的输出电压可调的<font color='red'>线性稳压器</font>电路
LDO工作原理
  如右图所示,该电路由串联调整管VT、取样电阻R1和R2、比较放大器A组成。 取样电压加在比较器A的同相输入端,与加在反相输入端的基准电压Uref相比较,两者的差值经放大器A放大后,控制串联调整管的压降,从而稳定输出电压。当输出电压Uout降低时,基准电压与取样电压的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高。相反,若输出电压Uout超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。供电过程中,输出电压校正连续进行,调整时间只受比较放大器和输出晶体管回路反应速度的限制。 应当说明,实际的线性稳压器还应当具有许多其它的功能,比如负载短路保护、过压关断、过热关
[电源管理]
<font color='red'>LDO</font>工作原理
如何选择恰当的超低静态电流LDO稳压器
电子应用设计人员现今面临的一项极重要挑战是将电子系统能耗降至最低。为了达到此目的,大多数系统利用不同的低功率模式,帮助降低整体功耗。在利用不同工作模式时,系统供电电流差异极大,低者如休眠模式下仅为数微安(μA)或不足1微安,高者如完整功率模式下达数十毫安(mA)甚至数百毫安。低压降线性稳压器(通常简称为LDO)是任何电源系统的常见构建模块,而线性稳压器的选择对系统总体能耗有重要影响。不仅如此,系统设计常常要求LDO不仅具有超低静态电流特性,还应当提供良好的动态性能,确保提供稳定及无噪声的电压输入端,适合敏感电路应用。这些要求还常常相互排斥,为IC设计人员带来切实的挑战。因此,市场上同时满足两方面要求的LDO为数不多。  
[电源管理]
如何选择恰当的超低静态电流<font color='red'>LDO</font>稳压器
如何正确选用低压差线性稳压器
  低压差线性稳压器相对常用的三端稳压器具有更高的性能,PCB面积占用和功耗更低,在手机等便携产品中得到广泛应用。本文介绍了LDO器件的结构和性能特点,并提出了可借鉴的参考设计。      低压差线性稳压器(LDO)是新一代的集成电路稳压器,它与三端稳压器最大的不同点是,LDO是一个自功耗很低的微型片上系统(SOC)。 LDO按其静态耗电流来分,可分为OmniPower、MicroPower 、NanoPower三种产品,OmniPower LDO的静态电流在100uA~1mA之间,MicroPower LDO的静态电流在10uA~100uA之间,NanoPower LDO的静态电流小于10uA,通常只有1uA。   OmniPo
[电源管理]
如何正确选用低压差<font color='red'>线性稳压器</font>
凌力尔特推出低压差电压线性稳压器 LT3063
    加利福尼亚州米尔皮塔斯 (MILPITAS, CA) – 2014 年 6 月 17 日 – 凌力尔特公司 (Linear Technology Corporation) 推出具备有源输出放电功能的高压、低噪声、低压差电压线性稳压器 LT3063。该 IC 提供高达 200mA 的连续输出电流,在满负载时具备 300mV 压差电压。LT3063 包含一个内部 NMOS 下拉电阻,如果 SHDN 引脚由低电平驱动或输入电压被关断,那么下拉电阻就给输出电压放电。这种快速输出放电有助于在高端成像传感器等在启动和停机时都需要电源调节的应用中保护负载。     LT3063 具备 1.6V 至 45V 的输入电压范围,提供 0.6V
[电源管理]
凌力尔特推出低压差电压<font color='red'>线性稳压器</font> LT3063
德州仪器低静态电流LDO TPS7A02让电池更长待机
如果您有个长时间不用的电子设备(比如无线耳机、可穿戴设备或者遥控器等等),您可能发现其实没开机,电池也没电了。如果设备只是处于待机或睡眠状态,则可能是由于一个很小但至关重要的因素决定的,那就是静态电流。 什么是静态电流? 静态电流被定义为“器件不活动或处于休眠状态时的电流消耗”。因此,静态电流(IQ)是系统在轻载或空载的待机模式下汲取的电流。静态电流通常与关机电流混淆,关机电流是指关闭设备但电池仍连接到系统时消耗的电流。不过,这两种规格在任何低电池消耗的设计中都很重要。 静态电流是大多数集成电路(IC)都需要考虑的,其中放大器,升压和降压转换器以及低压差线性稳压器(LDO)在消耗的静态电流中起重要作用。其中LDO是设计最为简单
[电源管理]
德州仪器低静态电流<font color='red'>LDO</font> TPS7A02让电池更长待机
超低静态电流LDO稳压器最佳选型详解(一)
电子应用设计人员现今面临的一项极重要挑战是将电子系统能耗降至最低。为了达到此目的,大多数系统利用不同的低功率模式,帮助降低整体功耗。在利用不同工作模式时,系统供电电流差异极大,低者如休眠模式下仅为数微安(μA)或不足1微安,高者如完整功率模式下达数十毫安(mA)甚至数百毫安。低压降线性稳压器(通常简称为LDO)是任何电源系统的常见构建模块,而线性稳压器的选择对系统总体能耗有重要影响。不仅如此,系统设计常常要求LDO不仅具有超低静态电流特性,还应当提供良好的动态性能,确保提供稳定及无噪声的电压输入端,适合敏感电路应用。这些要求还常常相互排斥,为IC设计人员带来切实的挑战。因此,市场上同时满足两方面要求的LDO为数不多。   本文将
[电源管理]
超低静态电流<font color='red'>LDO</font>稳压器最佳选型详解(一)
安森美推出5款新的低压降(LDO)及超低压降线性稳压器
  安森美半导体(ON Semiconductor)日前推出5款新的低压降(LDO)及超低压降线性稳压器,用于宽范围汽车应用,如后视摄像头模块、仪表组合、车身及底盘应用。这些新器件以节省空间的集成方案提供150毫安(mA)输出电流,符合汽车制造商对点火系统关闭时极低静态电流的最新要求。   * NCV8667 – 极低静态电流(Iq)稳压器,带启用(Enable)、复位及预警(Early Warning)功能   * NCV8668 – 极低Iq稳压器,带视窗看门狗(Window Watchdog)、启用及复位功能   * NCV8669 – 极低Iq稳压器,带复位、延迟及预警功能   * NCV8768 – 超低
[汽车电子]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved