用开关电源给高速AD转换器供电的优缺点

最新更新时间:2011-04-10来源: 互联网关键字:开关电源  高速AD转换器 手机看文章 扫描二维码
随时随地手机看文章

系统设计工程师常被要求降低总体功耗,以减少对我们环境的影响,同时降低投资和运营成本。他们还需要提高电路密度,以便实现外形尺寸更小的电子系统,并且能在更严苛的环境下工作。遗憾的是,若将高功耗解决方案整合到这些系统中,会带来极大的散热问题,而使得其他目标也无法实现。


传统上,ADC制造商一般推荐采用线性稳压器为转换器提供干净的电源。线性稳压器能够抑制系统电源中经常出现的低频噪声。此外,铁氧体磁珠和去耦电容相结合的方法可用来减少高频噪声。这种方法虽然有效,但却限制了效率,特别是在线性稳压器必须从高出其输出电压几伏的电源轨进行降压调节的系统中。低压差稳压器(LDO)的效率通常为30%~50%,而DC/DC稳压器的效率则高达90%。图1显示降压型开关稳压器如ADI公司的ADP2114的典型效率。

图1 ADP2114开关稳压器的典型效率


DC/DC转换器的效率虽然比LDO高很多,但DC/DC转换器在直接为高速模数转换器供电时,往往由于噪声太大而会导致性能大幅下降。这种噪声至少有两种来源:通过电源纹波直接进入转换器的噪声,以及由于磁耦合效应引起的噪声。电源纹波在ADC的输出频谱中以不同的音调(或者杂散)出现,或者导致底噪全面提高。ADC对这些不同音调的易感性可以进行表征,通常在转换器数据手册中以电源抑制比(PSRR)表示。但是PSRR无法表示对转换器底噪的宽带效应。开关电源中产生的大电流通常会产生很强的磁场,该磁场会与电路板上的其他磁性元件产生耦合,包括匹配网络中的电感,以及用于耦合模拟和时钟信号的变压器等。进行电路板布线时必须小心仔细,以防这些磁场与关键信号耦合。

省电(效率优势)
虽然半导体公司一直在推出更高效率的ADC、DAC和放大器,但是与用DC/DC稳压器替代LDO所获得的总系统功效相比,这些改进实在是微乎其微。这里以一个采用3.3V电源提供100mA电流或者330mW功率的线性电路为例,采用将5 V降压调节至3.3 V的典型LDO时,总功耗将为500mW,而仅有330mW提供有用功。原始电源必须比实际所需的电源大51%,这样既浪费能源又增加了成本。通过比较,不妨考虑效率为90%的DC/DC稳压器。5V电源的总电流要求将为74mA(这是一个更低得多的要求),可同时降低了功耗和成本。


在无线基站等系统中,电源通常由单个高电流电源提供。该电源通常通过大量不同的降压级向下降压调节,然后再到达线性和混合信号元器件。尽管每个降压级的效率都很高,但是它们也会浪费相当多的功率。图2显示了一个电源从12V电源轨进行降压调节的典型系统,其使用了三个或更多降压级为ADC和其他模拟器件提供电源。最后一级一般是LDO,通常,这一级的效率在降压级中最低。当按下图所示级联两次之后,即使是效率为90%的高效率DC/DC稳压器也仅能达到81%的效率,而最后的稳压级必须是LDO时,效率则会更低。

  图2  典型的系统级电源


随着DC/DC电源技术的进步以及更高开关频率的发展,DC/DC电源实现了在不造成性能损失的情况下,以大幅提高的效率直接为ADC供电。图3显示了省去LDO的典型降压电路。 

 图3 简化的系统级电源


此外,许多系统为每个ADC采用单独的LDO。单独的LDO用于提供不同ADC之间的噪声隔离,并降低每个LDO的功耗。这种单独提供的方式分散了LDO产生的热量,并且可使用小封装形式的LDO。由于开关转换器具有更高的效率,因此一个开关可为多个ADC和其他线性元件供电,而不会产生过多功耗和热量,而采用单个大LDO则会发生这种情况。在开关电源的输出端采用滤波铁氧体磁珠可为采用相同电源轨的元件提供隔离。采用开关电源减少了系统对稳压器的需求,由于省去了多余的LDO及其相关电路,因而可明显实现省电以及降低电路板成本。

实验室电路
诸如ADI公司的AD9268等16位、125MS/s模数转换器能够实现极低的噪声以及78dB的信噪比(SNR)指标。极低的–152dBm/Hz底噪使其成为评估开关电源的理想之选。DC/DC转换器引起的额外噪声或杂散量可以很容易在转换器的输出频谱中显示出来。该转换器与ADI ADP2114 PWM降压型稳压器是配套产品。这款双路输出降压型稳压器的效率高达95%,以高开关频率工作,并且具备低噪声特性。


一项实验室的研究对采用线性稳压器与采用开关稳压器时的ADC性能进行了对比。这些实验是采用转换器的用户评估板进行的。转换器有两个输入电源:AVDD为模拟部分供电,DRVDD为数字部分和输出部分供电。为了进行比较,转换器最初采用两个线性稳压器(ADI公司的ADP1706)进行评估,分别提供AVDD和DRVDD电压。该测试的设置如图4所示。然后转换器采用一个开关稳压器供电,如图5所示。其中,一个开关稳压器的输出提供给AVDD,另一个输出提供给DRVDD。

图4 采用ADP1708 LDO进行线性电源测量的框图

图5 采用ADP2114开关稳压器进行开关电源测量的框图


在这两种设置中,模拟输入源都采用罗德与施瓦茨公司 (R&S)的SMA-100信号发生器和K&L带通滤波器。模拟输入通过一个双巴伦输入网络提供,将信号发生器的单端输出转换至ADC的差分输入。采样时钟源为低抖动Wenzel振荡器,也通过用于单端-差分转换的巴伦电路供电。两次测量的输入电源轨(在稳压器前面)均设定为3.6V。  

ADC性能测量结果
在每种电源配置情况下,转换器的性能都进行了测量,以确定采用开关电源时性能是否下降。SNR和SFDR(无杂散动态范围)则通过一组输入频率进行测量;结果如表1所示,采用线性稳压器与采用开关电源相比,SNR或SFDR性能未出现大的变化。


开关稳压器可以异步工作,也可以与转换器的采样时钟同步而不影响转换器性能。同步可在应用中提供更多灵活性,这在应用中可能成为一个优势。

FFT图谱
图6和图7分别显示了采用线性电源与采用开关电源时,模拟输入频率为70MHz 的AD9268的FFT(快速傅立叶变换)图谱。

 图6 采用ADP1708线性电源的70MHz模拟输入

 图7 采用ADP2114开关电源的70MHz模拟输入


效率测量结果
表2显示每个电源解决方案所测得的效率。采用3.6V输入电压时,开关稳压器将效率提高了35%,功耗节省了640 mW。这里节省的功耗为单个转换器节省的功耗,在采用多个ADC的系统中,节省的功耗还将显著增加。

散热图像
图8和图9显示了采用LDO电源与采用ADP2114时,电路板电源部分的散热差别。两个图像采用相同的缩放比例。图8中SP01、SP02和SP03测量点显示线性稳压器的温度。图9中的SP06显示ADP2114的温度,它比图9中显示的线性稳压器的温度低10~15℃。SP04显示AD9268的温度,该温度在两个图像中差不多。还需注意的是,图9中的总背景温度更高,一个串联阻塞二极管(未标注)正在处理更高的热负载。  

图8 采用线性电源的AD9268评估板的散热图像

图9 采用ADP2114电源的AD9268评估板的散热图像

电路图详解
图10提供了开关稳压器的详细电路图,该稳压器被配置成在强制PWM模式下工作,通道设置为2A单独输出。通过在FREQ引脚和GND之间放置一个27kΩ的电阻,稳压器的开关频率被设置为1.2MHz。除了图中的电路之外,在开关和ADC之间还包含一个铁氧体磁珠,ADC电源引脚附近放置了标准的旁路电容。该设计可达到220μV的开关纹波,在ADP2114输出端的高频噪声低于6μV。AD9268附近加设的铁氧体磁珠和旁路电容将开关纹波降至300nV,并将ADC电源引脚处的噪声降至不到3μV。

图10 ADP2114电路配置


这里还提供了材料清单和布线信息。请注意,在布局中,开关电感L101和L102位于ADC和信号通道元件电路板的背面。这种布局有助于将这些电感和电路板顶部的元器件(特别是信号和时钟通道中的巴伦)之间的电压耦合降至最小。在采用开关转换器的布线中,需注意避免磁场或电场耦合。  
 

图11  ADP2114和AD9268的相对位置


结语
本文论证了在仔细遵循设计实践技巧的情况下,模数转换器可以直接采用开关电源供电,而不会造成性能损失。与采用ADP1708线性电源相比,采用ADP2114开关电源供电时,转换器的性能未出现下降。而采用开关电源可将电源效率提高30%~40%,并且能大幅降低总功耗(甚至超过简单地选择较低功耗的转换器)。在许多系统中,这些器件都需要连续工作,因此采用开关电源可大幅降低运营成本,并且性能也不会出现下降。

关键字:开关电源  高速AD转换器 编辑:冰封 引用地址:用开关电源给高速AD转换器供电的优缺点

上一篇:一种智能型全自动快速充电机的设计
下一篇:推挽软开关的实现

推荐阅读最新更新时间:2023-10-18 15:14

LED开关电源的PCB设计技术
  在开关电源设计中PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析:   一、从原理图到PCB的设计流程 建立元件参数- 输入原理网表- 设计参数设置- 手工布局- 手工布线- 验证设计- 复查- CAM输出。   二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。   焊盘内孔边缘到印制板边的距离要大于1mm,这样可以
[电源管理]
开关电源的抗干扰分析
引言   开关电源产生的干扰,按噪声干扰源种类来分,可以分为尖锋干扰和谐波干扰;若按耦合通路来分,可分为传导干扰和辐射干扰,开关电路框图如图1。    2 开关电源的主要干扰   2.1 一次整流回路的干扰   开关电源中的主要噪声干扰之一是由二极管断开时的反向恢复现象引起的,一次整流回路中的整流二极管正向导通时有较大的正向电流流过,它受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失前的一段时间,电流会反向流动,从而导致很大的电流变化。即一次整流回路的干扰。    2.2 开关回路的干扰   电源工作时,开关处于高频通断状态,在高频电流环路中,可能会产生较大的空间辐射噪声。  
[电源管理]
<font color='red'>开关电源</font>的抗干扰分析
开关电源技术问答
1、开关电源分单激式开关电源和双激式开关电源,以及正激式开关电源和反激式开关电源,这是怎么回事? 答: 开关电源分单激式开关电源和双激式开关电源是对开关电源变压器铁芯的磁化曲线(磁化过程)而言。如果开关变压器铁芯在磁化过程中,磁场强度与磁感应强度(磁通密度),只是数值的大小改变,而方向不变,这种开关变压器被称为单极化开关变压器,采用这种单极化开关变压器的开关电源,称为单击式开关电源;如果开关变压器铁芯在磁化过程中,磁场强度与磁感应强度(磁通密度),不但数值的大小改变,而且方向也改变,则这种开关变压器称为双极化开关变压器,采用这种双极化开关变压器的开关电源称为双激式开关电源。 在开关电源电路中,单激和
[电源管理]
基于脉冲序列控制技术的降压型开关电源
近年来, 随着电子技术和信息技术迅速发展,开关电源成为了电子工程领域应用和研究的热点。与线性电源相比, 开关电源在效率、功率密度、成本等方面显示出了明显的优势, 目前已经成为主要的DC-DC变换设备。对开关电源控制技术的研究也已成为电力电子技术领域中最为活跃的部分。 脉冲序列控制( PULSE T rain M, PT ) 是一种新型定频、非线性的电源控制技术。该技术利用脉冲控制器,根据开关电源的工作状态, 按照一定规律通过高能量脉冲和低能量脉冲组成的脉冲序列对主电路进行控制。与传统的PWM 控制不同, PT 控制系统没有延迟环节, 对变换器输入端或输出端出现的扰动具有较快的响应速度。 1 PT 工作原理及调制特性 1. 1 PT
[电源管理]
基于脉冲序列控制技术的降压型<font color='red'>开关电源</font>
开关电源结构分析
    开关电源的结构      常用开关电源,主要是为电子设备提供直流电源供电。电子设备所需要的直流电压,范围一般都在几伏到十几伏,而交流市电电源供给的电压为220V(110V),频率为50Hz(60Hz)。开关电源的作用就是把一个高电压等级的工频交流电变换成一个低电压等级的直流电。     开关电源图结构     工频交流电进入开关电源后被直接整流,省去了体积大、重量大的工频整流变压器。整流器输出为电压很高的直流电,整流后的电压经电容滤波,电压的平均值为300V~310V。高电压等级的直流电送往逆变器的输入端,经逆变器变换,变为高电压、高频交流电。目前开关电源逆变器的变换工作频率在几十到几百KHz 范围。逆变器
[电源管理]
<font color='red'>开关电源</font>结构分析
降低LED照明开关电源待机功耗方法的探讨
介绍 与普通光源相比,LED灯具有效率高、环保和使用寿命长的特性,因而它们正在成为降低室内和外部照明能耗的主选解决方案。设计用于照明供电的开关电源也应该具有高效率,以便顺应LED灯的节能特性。除了在正常工作过程中具有高功率转换效率之外,开关电源的待机功耗也成为LED业界的普遍关注焦点。在 不远的将来,待机功耗有望调整到1W甚至300mW以下。然而,在LED照明应用中,专用于待机电源的辅助功率级并不适用,主要是因为照明应用在工作期间 不存在待机条件。但是,为灯泡供电的开关电源即便在没有灯或者灯已损坏的条件下仍然与电网连接并吸取能量。这是在照明应用中关心待机功率水平的主要原因。 在空的办公楼中,待机功耗特性不良的照明系统是不环保的,
[电源管理]
降低LED照明<font color='red'>开关电源</font>待机功耗方法的探讨
低压大电流开关电源的设计
1 引言 开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。从上世纪90年代以来开关电源相继进入各种电子、电器设备领域,计算机、程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源。随着电源技术的发展,低电压,大电流的开关电源因其技术含量高,应用广,越来越受到人们重视。在开关电源中,正激和反激式有着电路拓扑简单,输入输出电气隔离等优点,广泛应用于中小功率电源变换场合。跟反激式相比,正激式变换器变压器铜损较低,同时,正激式电路副边纹波电压电流衰减比反激式明显,因此,一般认为正激式变换器适用在低压,大电流,功率较大的场合。 2 基本技术 2.1
[电源管理]
恒压/恒流输出式单片开关电源的设计原理
    摘要: 单片开关电源是国际上90年代才开始流行的新型开关电源芯片,本文阐述恒压/恒流输出式的设计原理。     关键词: 单片开关  设计原理  恒压/恒流输出 恒压/恒流输出式单片开关电源可简称为恒压/恒流源。其特点是具有两个控制环路,一个是电压控制环,另一个为电流控制环。当输出电流较小时,电压控制环起作用,具有稳压特性,它相当于恒压源;当输出电流接近或达到额定值时,通过电流控制环使IO维持恒定,它又变成恒流源。这种电源特别适用于电池充电器和特种电机驱动器。下面介绍一种低成本恒压/恒流输出式开关电源,其电流控制环是由晶体管构成的,电路简单,成本低,易于制作。 1 恒压/恒流输出式开关电源的工作原理
[应用]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved