一种宽输入双管反激式开关电源的设计

最新更新时间:2011-04-10来源: 互联网关键字:开关电源  PWM  变压器  MOSFET 手机看文章 扫描二维码
随时随地手机看文章

摘要:光伏并网发电系统中通常使用宽输入范围的开关电源来为低压微控制器、IGBT驱动器以及LCD供电。文中介绍了一种输入范围为120~800 V,输出为20V/1A的开关隔离电源的设计方法,从而有效地解决了光伏并网发电系统的供电问题。
关键词:开关电源;PWM;变压器;MOSFET

0 引言
    根据《太阳能光伏发电系统研制技术协议》的规定,接入太阳能光伏发电系统的电池阵列在最强光照的情况下的开路电压将不能超过750 V,最低不低于120 V。本文介绍的开关电源就是在120~750 V的输入电压范围内能稳定地输出,从而使太阳能光伏并网发电系统能在协议规定的输入范围内稳定地为低压控制器、IGBT驱动器以及LCD供电,并使系统可靠地工作。

1 电路拓扑
    本设计的电路拓扑结构如图1所示,图中,当VT1和VT2同时导通时,DC电源和变压器初级组成回路,变压器初级的电流上升,变压器的磁通密度从初始的剩余磁通Br上升到峰值Bw,并将能量存储在变压器中,这时,由于次级的二极管VD3的截止作用,使得变压器不能向次级传送能量;而当VT1和VT2同时关断的时候,由于反激的作用,变压器初级的电压反向,钳位二极管VD1和VD2导通,以把原边绕组的反激电压和开关管上的电压钳制在电源电压Vdc。此时,存储在变压器的能量一部分向副边传递,另一部分通过钳位二极管返回给电容C1和C2。因而在反激时间内,变压器的磁通密度从峰值Bw下降到剩余磁通Br。经过一段时间,VT1和VT2又同时开通,以进入下一个周期。整个电路通过连续地开关VT1和VT2,就可以得到稳定的直流输出。


    由于实际电路的分布参数以及开关管VT1和VT2的属性并非完全相同,所以,VT1和VT2不是完全同时开关。当VT1先关断时,变压器初级T1、VT2和VD2组成回路续流,而当VT2关断时,变压器储存的能量将向次级传送;同理,当VT2先关断,变压器初级T1、VT1和VD1将组成回路续流,并当VT1关断时,变压器存储的能量向次级传送。
    与一般采用单管加控制芯片的开关电源不同的是,本设计采用了上下两个MOSFET,这样做的目的一是可以降低每个开关管上承受的电压,二是两个开关管不需要采用两个控制芯片来控制,而只用一个PWM波就可以实现两个开关管的同时开通和关断。

图2所示是本设计的主电路图,图中,D1和D2主要防止由于反激电压串入DC电源引起DC电压波动,R1和R2取值相同,C1和C2的容值属性均相同,这样一方面可以平衡C1和C2上的电压,另一方面可以降低C1的C2的耐压。VT1和VT2共用一个驱动信号,故可实现同时开通和关断。  R3为采样电阻,该主电路采用的是峰值电流控制模式。VT4的作用主要是外加保护。辅助绕组的设计主要是为控制电路供电。次级整流二极管后加π型滤波器的效果要比只用电容滤波更好,R4为假负载,主要是防止开关电源的空载。R5,R6,tl431,pc817和R7共同组成反馈电路。



2 控制电路的设计
    本设计采用SG6841高集成环保模式PWM控制器,该控制器采用电流模式(逐周期电流限制)的工作方式,可以实现软驱动图腾柱输出的可调控的PWM波形,其输出电压可达18 V,足以同时驱动两路MOSFET。本设计还在PWM输出端设计了一个信号耦合变压器,这样可用同一个PWM信号来控制两个MOSFET,使Q1和Q2同时开通和关断,还可以实现驱动MOSFET信号的隔离。另外,该控制器也可以提供欠压锁定和过温保护功能,当VDD小于10 V时,控制器内部将锁定,不再向外发送PWM波。
    本设计采用负载绕组给控制芯片SG6841供电,从主电路可知,辅助绕组和次级绕组处在相同的工作方式下,这在设计变压器的时候只要根据次级输出就可以确定辅助绕组的设计。应当注意的是,在双管反激电路中,两个开关管中间有一个悬浮地,因而不能直接驱动,所以,这里采用变压器隔离驱动方法来使VT1和VT2公用同一驱动信号。
    图3所示是本设计的控制芯片电路及驱动电路,图中,R3接在直流电压DC端主要用来启动,当流入3脚的电流足够启动芯片的时候,芯片8脚Gate输出PWM波,从而使主电路导通,电源开始工作。R4主要确定芯片输出PWM波的频率,R5和C5组成电流采样的匹配网路。由于芯片采用逐周峰值电流工作方式,故在初级线圈电流达到峰值时,芯片将关断PWM波,变压器向次级传送能量。


    图4所示是其系统中的输入欠压和输出过压保护电路。由于本开关电源设计采用了输入过压和输入欠压保护,故当输入高于750 V或低于120V时,比较器的2脚电压值会高于2.5 V或比较器的5脚会低于2.5 V,本设计采用精密可调线性稳压器TL431来产生2.5 V的基准源,并分别给比较器的3脚和6脚供电,这样,在比较器的1脚或7脚就会产生低电平,Q5由于基级电压过低而截止,线性光耦U5的发光二极管不能发光。这时,由于Q4S接到输出储能电容上,Q4C和Q4S不能组成通路,所以,加在Q4管的GS间的电压Ugs为零,开关管Q4关断,电源不能向后面负载供电,从而实现欠压和过压保护功能。



3 电路变压器的设计
    采用两个开关管串联不会影响主电路中变压器的设计,故可根据《开关电源设计指南》中相关介绍来计算变压器参数,本设计选用TDK公司的PC40EE25高频磁性材料作为铁芯,变压器的参数计算如下:
   
    根据反激式变压器的伏秒面积相等原理可知:
   
    式中,Ac为有效磁芯面积,单位为cm2,Bmax为最大磁通密度,单位为G(高斯Wb/cm2)。

4 实验结果
    目前,笔者采用该技术成功地设计出了一种输入范围为120~800 V,输出功率为20 W的辅助开关电源。
    本设计采用直流120~800 V输入,输出单路为20 V/1 A,其实验的工作频率f为100 kHz,主变压器选用PC40 EE25高频磁芯,驱动隔离变压器选用T57 R12.5x7.5x5高频脉冲变压器磁芯,主开关VT1和VT2选用APT 4M120K N沟道MOSFET,钳位二极管VD1和VD2选用HER308肖特基二极管,整流二极管VD3选用CQ504,保护电路开关管VD4选用IRF9640 P沟道MOSFET。

5 结束语
    实验证明,由于本设计采用了反激式拓扑结构,因此,电路工作稳定度好。这种结构的特点是整个电路使用元器件少,本身固有效率高(典型效率为80%),采用单片开关控制,整体设计比较经济,又因为和主功率回路分开,从而避免了相互干扰,提高了可靠性

关键字:开关电源  PWM  变压器  MOSFET 编辑:冰封 引用地址:一种宽输入双管反激式开关电源的设计

上一篇:电源斩波调光控制boost LED驱动器保持小浪涌电流
下一篇:日本多处核电站外部电源出现故障

推荐阅读最新更新时间:2023-10-18 15:14

ARM7单片机(学习ing)—(七)、脉宽调制PWM—01
SPI之后呢~~ 就是脉宽调制PWM了~~ 下一篇就是IIC喽~~ 然后就结束~~ 七、脉宽调制(PWM) 七—(01)、PWM相关应用和寄存器的介绍~~ 1、特性 2、描述 3、管脚描述 4、寄存器描述 a、中断寄存器 b、定时器控制寄存器 c、定时器计数器 d、预分频寄存器 e、预分频计数器寄存器 f、匹配寄存器 g、匹配控制寄存器 h、PWM控制寄存器 i、PWM锁存寄存器
[单片机]
ARM7单片机(学习ing)—(七)、脉宽调制<font color='red'>PWM</font>—01
简述LED灯条开关电源的基本构成与检测要点
关于LED灯条开关电源的基本构成 LED灯条 开关电源 的构成一般有LED二极管、IGBT和MOSFET这几部分。它由电路来控制开关管而进行高速的道通和截止,将直流电转化成高频交流电来给变换器进行变压,使其产生所需要的一组或多组电压,开关电源大体可以分为隔离和不隔离这两种,是隔离型的一定有开关电源变换器,而不隔离的未必一定有开关电源变换器。开关电源与传统直流电源相比具有体积小、重量轻、和效率高等优点。 关于LED灯条开关电源的检测要点 LED灯条 开关电源 是有电路来控制开关管而进行高速的道通和截止,是将直流电转化成高频交流电来给变换器进行变压,使其产生所需要的一组或多组电压,转化为高频交流电的道理是高频交流在变压器电路中的效率要
[电源管理]
开关电源设计:上网本处理器电源设计要点
由于更高的集成度、更快的处理器运行速度以及更小的特征尺寸,内核及I/O电压的负载点(POL)处理器电源设计变得越来越具挑战性。处理器技术的发展必须要和POL电源设计技术相匹配。对当今的高性能处理器而言,5年或10年以前使用的电源管理解决方案可能已不再行之有效。 因此,当为德州仪器(TI)的DaVinci数字信号处理器(DSP)进行POL电源解决方案设计时,充分了解基本电源技术可以帮助克服许多设计困难。本文以一个基于TI电源管理产品的电源管理参考设计为例,讨论一系列适用于DaVinci处理器的电源去耦、浪涌电流、稳压精度和排序技术。 大型旁路去耦电容 处理器所使用的全部电流除了由电源本身提供以外,处理器旁路和一些电源的大
[电源管理]
<font color='red'>开关电源</font>设计:上网本处理器电源设计要点
基于AVR单片机PWM功能的数控恒流源电路设计与产品研制
随着电子技术的深入发展,各种智能仪器越来越多,涉及领域越来越广,而仪器对 电源 的要求也越来越高。现今,电源设备有朝着数字化方向发展的趋势。然而绝大多数数控电源设计是通过高位数的 A/D 和 D/A 芯片来实现的,这虽然能获得较高的精度,但也使得成本大为增加。本文介绍一种基于AVR单片机PWM功能的低成本高精度数控恒流源,能够精确实现0~2A恒流。 系统框图 图1为系统的总体框图。本系统通过小键盘和 LCD 实现人机交流,小键盘负责接收要实现的 电流 值,LCD12864负责显示。AVR单片机根据输入的电流值产生对应的PWM波,经过 滤波 和 功放 电路 后对压控恒流元件进行控制,产生电流,电流再经过采样 电阻 到达
[单片机]
基于AVR单片机<font color='red'>PWM</font>功能的数控恒流源电路设计与产品研制
理想变压器空载时原边感应电动势方向的判断
当我在看赵修科老师的磁性元件资料时, 遇到理想 变压器 原边感应电动势的方向的问题,在各位热心的朋友的帮助下,我终于解除了一直困惑的问题,因此也想在这里跟大家分享下。 理想模式下, 变压器 原边加电压ui , 通过原边N1线圈回路产生电流i1 , 变化的i1引起N1线圈中Φ的变化(以i1增大为例说明),因为通过N1线圈中的磁通发生了变化,一定会在N1线圈两端产生感应电动势,有下面几个问题没有想明白: a. 原边产生的感应电动势的方向如何确定呢? 1). N1线圈感应电动势产生感生电流,感生电流所产生的磁通会阻止外加电压ui产生的磁通的变化,感生电流产生的磁通的方向与原来的磁通方向相反.根据右手螺旋定则(拇指指向感生磁通
[电源管理]
理想<font color='red'>变压器</font>空载时原边感应电动势方向的判断
详解液晶彩电背光灯驱动电路
  为了让冷阴极灯管安全、高效稳定地工作,其供电与激励必须符合灯管的特性。具体而言,灯管的供电必须是频率为30kHz~100kHz的正弦交流电。如果给灯管两端加上直流电压,会使部分气体聚集在灯管的一端,则灯管就会一端亮一端暗。   在 液晶 彩电中, 电源 板输出的电压为+24V或+12V直流电压,显然不能直接 驱动 背光灯管,因此需要一个升压电路把电源板输出较低的直流电转换为背光灯管启动及正常工作所需的高频正弦交流电。这个升压电路组件就是常说的背光灯驱动板(Inverter),又称 逆变器 、升压板或高压板。   在 液晶电视 机中,背光灯驱动板是一个单独工作且受控于CPU的电路组件,其主要作用是点亮液晶屏内的背光灯管,
[电源管理]
详解液晶彩电背光灯驱动电路
用示波器完成开关电源环路响应(伯德图)测试
示波器是最重要的电源测试和表征工具。目前,许多示波器(包括是德科技 InfiniiVision X 系列示波器)都可以提供专用的电源测量选件,以帮助工程师自动完成很多重要测试。图 1 显示了是德科技InfiniiVision 3000T、4000 和 6000 X 系列示波器使用电源测量选件(DSOX3PWR、DSOX4PWR、DSOX6PWR)支持的电源测量项目。频率响应测量是是德科技独有的测量功能,它包括控制环路响应(伯德图)和电源抑制比(PSRR)。此类特定的激励响应测量通常是由低频网络分析仪完成。但是由于是德科技 InfiniiVision X 系列示波器内置了函数/ 任意波形发生器,所以也可用于此类测量。 图 1:Keys
[测试测量]
用示波器完成<font color='red'>开关电源</font>环路响应(伯德图)测试
Diodes 公司推出升压/SEPIC 控制器在车用照明产品应用中实现 50kHz LED 宽 PWM 调光
【2023 年 9 月 26 日美国德州普拉诺讯】 Diodes 公司 (Diodes)推出一款适用于各种车用 LED 产品应用的升压/单端初级电感转换器 (SEPIC) 控制器。 AL8853AQ 是一款符合汽车规格、高集成度的升压/SEPIC 控制器,可以降低车用 LED 产品应用 (包括车外灯、大灯、抬头显示器 (HUD) 和背光显示器) 的物料清单 (BOM)并且提供高性能。 汽车大灯制造商可以使用 SEPIC 拓扑结构,实现直接由车辆电池供电的远光或近光 LED 列阵驱动器,而非使用升压后降压转换器的传统两级拓扑结构,或全桥降压-升压拓扑结构。AL8853AQ 的 SEPIC 功能支持降压-升压型拓扑结构,具有
[汽车电子]
Diodes 公司推出升压/SEPIC 控制器在车用照明产品应用中实现 50kHz LED 宽 <font color='red'>PWM</font> 调光
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved