目的 希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教.
2 设计步骤:
2.1 绘线路图、PCB Layout.
2.2 变压器计算.
2.3 零件选用.
2.4 设计验证.
3 设计流程介绍(以DA-14B33为例):
3.1 线路图、PCB Layout请参考资识库中说明.
3.2 变压器计算:
变压器是整个电源供应器的重要核心,所以变压器的计算及验証是很重要的,以下即就DA-14B33变压器做介绍.
3.2.1 决定变压器的材质及尺寸:
依据变压器计算公式 B(max) = 铁心饱合的磁通密度(Gauss) Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm2) B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss,设计时应考虑零件误差,所以一般取3000~3500 Gauss之间,若所设计的power为Adapter(有外壳)则应取3000 Gauss左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae越高,所以可以做较大瓦数的Power.
3.2.2 决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power,但相对价格亦较高.
3.2.3 决定变压器线径及线数: 当变压器决定后,变压器的Bobbin即可决定,依据Bobbin的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准. 3.2.4 决定Duty cycle (工作周期): 由以下公式可决定Duty cycle ,Duty cycle的设计一般以50%为基准,Duty cycle若超过50%易导致振荡的发生. NS = 二次侧圈数 NP = 一次侧圈数 Vo = 输出电压 VD= 二极管顺向电压 Vin(min) = 滤波电容上的谷点电压 D = 工作周期(Duty cycle)
3.2.5 决定Ip值: Ip = 一次侧峰值电流 Iav = 一次侧平均电流 Pout = 输出瓦数 效率 PWM震荡频率
3.2.6 决定辅助电源的圈数: 依据变压器的圈比关系,可决定辅助电源的圈数及电压.
3.2.7 决定MOSFET及二次侧二极管的Stress(应力): 依据变压器的圈比关系,可以初步计算出变压器的应力(Stress)是否符合选用零件的规格,计算时以输入电压264V(电容器上为380V)为基准.
3.2.8 其它: 若输出电压为5V以下,且必须使用TL431而非TL432时,须考虑多一组绕组提供Photo coupler及TL431使用. 3.2.9 将所得资料代入 公式中,如此可得出B(max),若B(max)值太高或太低则参数必须重新调整. 3.2.10 DA-14B33变压器计算: 输出瓦数13.2W(3.3V/4A),Core = EI-28,可绕面积(槽宽)=10mm,Margin Tape = 2.8mm(每边),剩余可绕面积=4.4mm. 假设fT = 45 KHz ,Vin(min)=90V, =0.7,P.F.=0.5(cosθ),Lp=1600 Uh
计算式: 变压器材质及尺寸: 由以上假设可知材质为PC-40,尺寸=EI-28,Ae=0.86cm2,可绕面积(槽宽)=10mm,因Margin Tape使用2.8mm,所以剩余可绕面积为4.4mm. 假设滤波电容使用47uF/400V,Vin(min)暂定90V. 决定变压器的线径及线数: 假设NP使用0.32ψ的线 电流密度= 可绕圈数= 假设Secondary使用0.35ψ的线 电流密度= 假设使用4P,则 电流密度= 可绕圈数= 决定Duty cycle: 假设Np=44T,Ns=2T,VD=0.5(使用schottky Diode) 决定Ip值: 决定辅助电源的圈数: 假设辅助电源=12V NA1=6.3圈 假设使用0.23ψ的线可绕圈数= 若NA1=6Tx2P,则辅助电源=11.4V 决定MOSFET及二次侧二极管的Stress(应力): MOSFET(Q1) =最高输入电压(380V)+ = =463.6V Diode(D5)=输出电压(Vo)+ x最高输入电压(380V) = =20.57V Diode(D4)= = =41.4V 其它: 因为输出为3.3V,而TL431的Vref值为2.5V,若再加上photo coupler上的压降约1.2V,将使得输出电压无法推动Photo coupler及TL431,所以必须另外增加一组线圈提供回授路径所需的电压. 假设NA2 = 4T使用0.35ψ线,则 可绕圈数= ,所以可将NA2定为4Tx2P 变压器的接线图:
3.3 零件选用: 零件位置(标注)请参考线路图: (DA-14B33 Schematic)
3.3.1 FS1: 由变压器计算得到Iin值,以此Iin值(0.42A)可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值.
3.3.2 TR1(热敏电阻): 电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上). 3.3.3 VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端 (Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考量,可先忽略不装. 3.3.4 CY1,CY2(Y-Cap): Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap , AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路因为有FG所以使用Y2-Cap,Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max).
3.3.5 CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction规范一般可分为: FCC Part 15J Class B 、 CISPR 22(EN55022) Class B 两种 , FCC测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz, Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但价格愈高),若X-Cap在0.22uf以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2MΩ 1/4W). 3.3.6 LF1(Common Choke): EMI防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI特性及温升,以同样尺寸的Common Choke而言,线圈数愈多(相对的线径愈细),EMI防制效果愈好,但温升可能较高.
3.3.7 BD1(整流二极管): 将AC电源以全波整流的方式转换为DC,由变压器所计算出的Iin值,可知只要使用1A/600V的整流二极管,因为是全波整流所以耐压只要600V即可. 3.3.8 C1(滤波电容): 由C1的大小(电容值)可决定变压器计算中的Vin(min)值,电容量愈大,Vin(min)愈高但价格亦愈高,此部分可在电路中实际验证Vin(min)是否正确,若AC Input 范围在90V~132V (Vc1 电压最高约190V),可使用耐压200V的电容;若AC Input 范围在90V~264V(或180V~264V),因Vc1电压最高约380V,所以必须使用耐压400V的电容.
Re:开关电方设计过祘3.3.9 D2(辅助电源二极管): 整流二极管,一般常用FR105(1A/600V)或BYT42M(1A/1000V),两者主要差异: 1. 耐压不同(在此处使用差异无所谓) 2. VF不同(FR105=1.2V,BYT42M=1.4V) 3.3.10 R10(辅助电源电阻): 主要用于调整PWM IC的VCC电压,以目前使用的3843而言,设计时VCC必须大于8.4V(Min. Load时),但为考虑输出短路的情况,VCC电压不可设计的太高,以免当输出短路时不保护(或输入瓦数过大). 3.3.11 C7(滤波电容): 辅助电源的滤波电容,提供PWM IC较稳定的直流电压,一般使用100uf/25V电容. 3.3.12 Z1(Zener 二极管):
当回授失效时的保护电路,回授失效时输出电压冲高,辅助电源电压相对提高,此时若没有保护电路,可能会造成零件损坏,若在3843 VCC与3843 Pin3脚之间加一个Zener Diode,当回授失效时Zener Diode会崩溃,使得Pin3脚提前到达1V,以此可限制输出电压,达到保护零件的目的.Z1值的大小取决于辅助电源的高低,Z1的决定亦须考虑是否超过Q1的VGS耐压值,原则上使用公司的现有料(一般使用1/2W即可).
3.3.13 R2(启动电阻): 提供3843第一次启动的路径,第一次启动时透过R2对C7充电,以提供3843 VCC所需的电压,R2阻值较大时,turn on的时间较长,但短路时Pin瓦数较小,R2阻值较小时,turn on的时间较短,短路时Pin瓦数较大,一般使用220KΩ/2W M.O.. 3.3.14 R4 (Line Compensation): 高、低压补偿用,使3843 Pin3脚在90V/47Hz及264V/63Hz接近一致(一般使用750KΩ~1.5MΩ 1/4W之间). 3.3.15 R3,C6,D1 (Snubber): 此三个零件组成Snubber,调整Snubber的目的:1.当Q1 off瞬间会有Spike产生,调整Snubber可以确保Spike不会超过Q1的耐压值,
2.调整Snubber可改善EMI.一般而言,D1使用1N4007(1A/1000V)EMI特性会较好.R3使用2W M.O.电阻,C6的耐压值以两端实际压差为准(一般使用耐压500V的陶质电容).
3.3.16 Q1(N-MOS): 目前常使用的为3A/600V及6A/600V两种,6A/600V的RDS(ON)较3A/600V小,所以温升会较低,若IDS电流未超过3A,应该先以3A/600V为考量,并以温升记录来验证,因为6A/600V的价格高于3A/600V许多,Q1的使用亦需考虑VDS是否超过额定值. 3.3.17 R8: R8的作用在保护Q1,避免Q1呈现浮接状态.
3.3.18 R7(Rs电阻): 3843 Pin3脚电压最高为1V,R7的大小须与R4配合,以达到高低压平衡的目的,一般使用2W M.O.电阻,设计时先决定R7后再加上R4补偿,一般将3843 Pin3脚电压设计在0.85V~0.95V之间(视瓦数而定,若瓦数较小则不能太接近1V,以免因零件误差而顶到1V). 3.3.19 R5,C3(RC filter): 滤除3843 Pin3脚的噪声,R5一般使用1KΩ 1/8W,C3一般使用102P/50V的陶质电容,C3若使用电容值较小者,重载可能不开机(因为3843 Pin3瞬间顶到1V);若使用电容值较大者,也许会有轻载不开机及短路Pin过大的问题. 3.3.20 R9(Q1 Gate电阻 ): R9电阻的大小,会影响到EMI及温升特性,一般而言阻值大,Q1 turn on / turn off的速度较慢,EMI特性较好,但Q1的温升较高、效率较低(主要是因为turn off速度较慢);若阻值较小, Q1 turn on / turn off的速度较快,Q1温升较低、效率较高,但EMI较差,一般使用51Ω-150Ω 1/8W.
3.3.21 R6,C4(控制振荡频率): 决定3843的工作频率,可由Data Sheet得到R、C组成的工作频率,C4一般为10nf的电容(误差为5%),R6使用精密电阻,以DA-14B33为例,C4使用103P/50V PE电容,R6为3.74KΩ 1/8W精密电阻,振荡频率约为45 KHz. 3.3.22 C5: 功能类似RC filter,主要功用在于使高压轻载较不易振荡,一般使用101P/50V陶质电容. 3.3.23 U1(PWM IC):
3843是PWM IC的一种,由Photo Coupler (U2)回授信号控制Duty Cycle的大小,Pin3脚具有限流的作用(最高电压1V),目前所用的3843中,有KA3843(SAMSUNG)及UC3843BN(S.T.)两种,两者脚位相同,但产生的振荡频率略有差异,UC3843BN较KA3843快了约2KHz,fT的增加会衍生出一些问题(例如:EMI问题、短路问题),因KA3843较难买,所以新机种设计时,尽量使用UC3843BN. 3.3.24 R1、R11、R12、C2(一次侧回路增益控制):
3843内部有一个Error AMP(误差放大器),R1、R11、R12、C2及Error AMP组成一个负回授电路,用来调整回路增益的稳定度,回路增益,调整不恰当可能会造成振荡或输出电压不正确,一般C2使用立式积层电容(温度持性较好).
3.3.25 U2(Photo coupler) 光耦合器(Photo coupler)主要将二次侧的信号转换到一次侧(以电流的方式),当二次侧的TL431导通后,U2即会将二次侧的电流依比例转换到一次侧,此时3843由Pin6 (output)输出off的信号(Low)来关闭Q1,使用Photo coupler的原因,是为了符合安规需求(primacy to secondary的距离至少需5.6mm).
3.3.26 R13(二次侧回路增益控制): 控制流过Photo coupler的电流,R13阻值较小时,流过Photo coupler的电流较大,U2转换电流较大,回路增益较快(需要确认是否会造成振荡),R13阻值较大时,流过Photo coupler的电流较小,U2转换电流较小,回路增益较慢,虽然较不易造成振荡,但需注意输出电压是否正常.
3.3.27 U3(TL431)、R15、R16、R18 调整输出电压的大小, ,输出电压不可超过38V(因为TL431 VKA最大为36V,若再加Photo coupler的VF值,则Vo应在38V以下较安全),TL431的Vref为2.5V,R15及R16并联的目的使输出电压能微调,且R15与R16并联后的值不可太大(尽量在2KΩ以下),以免造成输出不准.
3.3.28 R14,C9(二次侧回路增益控制): 控制二次侧的回路增益,一般而言将电容放大会使增益变慢;电容放小会使增益变快,电阻的特性则刚好与电容相反,电阻放大增益变快;电阻放小增益变慢,至于何谓增益调整的最佳值,则可以Dynamic load来量测,即可取得一个最佳值.
3.3.29 D4(整流二极管): 因为输出电压为3.3V,而输出电压调整器(Output Voltage Regulator)使用TL431(Vref=2.5V)而非TL432(Vref=1.25V),所以必须多增加一组绕组提供Photo coupler及TL431所需的电源,因为U2及U3所需的电流不大(约10mA左右),二极管耐压值100V即可,所以只需使用1N4148(0.15A/100V). 3.3.30 C8(滤波电容): 因为U2及U3所需的电流不大,所以只要使用1u/50V即可. 3.3.31 D5(整流二极管): 输出整流二极管,D5的使用需考虑: a. 电流值 b. 二极管的耐压值 以DA-14B33为例,输出电流4A,使用10A的二极管(Schottky)应该可以,但经点温升验証后发现D5温度偏高,所以必须换为15A的二极管,因为10A的VF较15A的VF 值大.耐压部分40V经验証后符合,因此最后使用15A/40V Schottky. 3.3.32 C10,R17(二次侧snubber) :
D5在截止的瞬间会有spike产生,若spike超过二极管(D5)的耐压值,二极管会有被击穿的危险,调整snubber可适当的减少spike的电压值,除保护二极管外亦可改善EMI,R17一般使用1/2W的电阻,C10一般使用耐压500V的陶质电容,snubber调整的过程(264V/63Hz)需注意R17,C10是否会过热,应避免此种情况发生.
3.3.33 C11,C13(滤波电容): 二次侧第一级滤波电容,应使用内阻较小的电容(LXZ,YXA…),电容选择是否洽当可依以下三点来判定: a. 输出Ripple电压是符合规格 b. 电容温度是否超过额定值 c. 电容值两端电压是否超过额定值
3.3.34 R19(假负载): 适当的使用假负载可使线路更稳定,但假负载的阻值不可太小,否则会影响效率,使用时亦须注意是否超过电阻的额定值(一般设计只使用额定瓦数的一半).
3.3.35 L3,C12(LC滤波电路): LC滤波电路为第二级滤波,在不影响线路稳定的情况下,一般会将L3 放大(电感量较大),如此C12可使用较小的电容值. 4 设计验証:(可分为三部分) a. 设计阶段验証 b. 样品制作验証 c. QE验証 4.1 设计阶段验証 设计实验阶段应该养成记录的习惯,记录可以验証实验结果是否与电气规格相符,以下即就DA-14B33设计阶段验証做说明(验証项目视规格而定).
4.1.1 电气规格验証:
4.1.1.1 3843 PIN3脚电压(full load 4A) : 90V/47Hz = 0.83V 115V/60Hz = 0.83V 132V/60Hz = 0.83V 180V/60Hz = 0.86V 230V/60Hz = 0.88V 264V/63Hz = 0.91V 4.1.1.2 Duty Cycle , fT: 4.1.1.3 Vin(min) = 100V (90V / 47Hz full load)
4.1.1.4 Stress (264V / 63Hz full load) : Q1 MOSFET: 4.1.1.5 辅助电源(开机,满载)、短路Pin max.:
4.1.1.6 Static (full load) Pin(w) Iin(A) Iout(A) Vout(V) P.F. Ripple(mV) Pout(w) eff 90V/47Hz 18.7 0.36 4 3.30 0.57 32 13.22 70.7 115V/60Hz 18.6 0..31 4 3.30 0.52 28 13.22 71.1 132V/60Hz 18.6 0.28 4 3.30 0.50 29 13.22 71.1 180V/60Hz 18.7 0.21 4 3.30 0.49 30 13.23 70.7 230V/60Hz 18.9 0.18 4 3.30 0.46 29 13.22 69.9 264V/60Hz 19.2 0.16 4 3.30 0.45 29 13.23 68.9 4.1.1.7 Full Range负载(0.3A-4A) (验証是否有振荡现象)
4.1.1.8 回授失效(输出轻载) Vout = 8.3V90V/47Hz Vout = 6.03V264V/63Hz
4.1.1.9 O.C.P.(过电流保护) 90V/47Hz = 7.2A 264V/63Hz = 8.4A 4.1.1.10 Pin(max.) 90V/47Hz = 24.9W 264V/63Hz = 27.1W 4.1.1.11 Dynamic test H=4A,t1=25ms,slew Rate = 0.8A/ms (Rise) L=0.3A,t2=25ms,slew Rate = 0.8A/ms (Full) 90V/47Hz 264V/63Hz
4.1.1.12 HI-POT test: HI-POT test一般可分为两种等级: 输入为3 Pin(有FG者),HI-POT test为1500Vac/1 minute.Y-CAP使用Y2-CAP 输入为2 Pin(无FG者),HI-POT test为3000Vac/1 minute.Y-CAP使用Y1-CAP DA-14B33属于输入3 PIN HI-POT test 为1500Vac/1 minute. 4.1.1.13 Grounding test: 输入为3 Pin(有FG者),一般均要测接地阻(Grounding test),安规规定FG到输出线材(输出端)的接地电阻不能超过100MΩ(2.5mA/3 Second). 4.1.1.14 温升记录
设计实验定案后(暂定),需针对整体温升及EMI做评估,若温升或EMI无法符合规格,则需重新实验.温升记录请参考附件,D5原来使用BYV118(10A/40V Schottky barrier 肖特基二极管 ),因温升较高改为PBYR1540CTX(15A/40V). 4.1.1.15 EMI测试: EMI测试分为二类: Conduction(传导干扰)
Radiation(幅射干扰) 前者视规范不同而有差异(FCC : 450K - 30MHz,CISPR 22 :150K - 30MHz),前者可利用厂内的频谱分析仪验証;后者(范围由30M - 300MHz,则因厂内无设备必须到实验室验証,Conduction,Radiation测试资料请参考附件) .
4.1.1.16 机构尺寸: 设计阶段即应对机构尺寸验証,验証的项目包括 : PCB尺寸、零件限高、零件禁置区、螺丝孔位置及孔径、外壳孔寸….,若设计阶段无法验証,则必须在样品阶段验証.
4.1.2 样品验証: 样品制作完成后,除温升记录、EMI测试外(是否需重新验証,视情况而定),每一台样品都应经过验証(包括电气及机构尺寸),此阶段的电气验証可以以ATE(Chroma)测试来完成,ATE测试必须与电气规格相符. 4.1.3 QE验証: QE针对工程部所提供的样品做验証,工程部应提供以下交件及样品供QE验証.
上一篇:照明电源上使用贴片电容的过程中需要注意的事项
下一篇:能效手机充电器的电源设计与应用研究
推荐阅读最新更新时间:2023-10-18 15:16
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC